{"title":"LRCM:通过潜在表征压缩增强对抗性纯化","authors":"Yixin Li, Xintao Luo, Weijie Wu, Minjia Zheng","doi":"10.1049/cvi2.70030","DOIUrl":null,"url":null,"abstract":"<p>In the current context of the extensive use of deep neural networks, it has been observed that neural network models are vulnerable to adversarial perturbations, which may lead to unexpected results. In this paper, we introduce an Adversarial Purification Model rooted in latent representation compression, aimed at enhancing the robustness of deep learning models. Initially, we employ an encoder-decoder architecture inspired by the U-net to extract features from input samples. Subsequently, these features undergo a process of information compression to remove adversarial perturbations from the latent space. To counteract the model's tendency to overly focus on fine-grained details of input samples, resulting in ineffective adversarial sample purification, an early freezing mechanism is introduced during the encoder training process. We tested our model's ability to purify adversarial samples generated from the CIFAR-10, CIFAR-100, and ImageNet datasets using various methods. These samples were then used to test ResNet, an image recognition classifiers. Our experiments covered different resolutions and attack types to fully assess LRCM's effectiveness against adversarial attacks. We also compared LRCM with other defence strategies, demonstrating its strong defensive capabilities.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70030","citationCount":"0","resultStr":"{\"title\":\"LRCM: Enhancing Adversarial Purification Through Latent Representation Compression\",\"authors\":\"Yixin Li, Xintao Luo, Weijie Wu, Minjia Zheng\",\"doi\":\"10.1049/cvi2.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current context of the extensive use of deep neural networks, it has been observed that neural network models are vulnerable to adversarial perturbations, which may lead to unexpected results. In this paper, we introduce an Adversarial Purification Model rooted in latent representation compression, aimed at enhancing the robustness of deep learning models. Initially, we employ an encoder-decoder architecture inspired by the U-net to extract features from input samples. Subsequently, these features undergo a process of information compression to remove adversarial perturbations from the latent space. To counteract the model's tendency to overly focus on fine-grained details of input samples, resulting in ineffective adversarial sample purification, an early freezing mechanism is introduced during the encoder training process. We tested our model's ability to purify adversarial samples generated from the CIFAR-10, CIFAR-100, and ImageNet datasets using various methods. These samples were then used to test ResNet, an image recognition classifiers. Our experiments covered different resolutions and attack types to fully assess LRCM's effectiveness against adversarial attacks. We also compared LRCM with other defence strategies, demonstrating its strong defensive capabilities.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70030\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70030","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LRCM: Enhancing Adversarial Purification Through Latent Representation Compression
In the current context of the extensive use of deep neural networks, it has been observed that neural network models are vulnerable to adversarial perturbations, which may lead to unexpected results. In this paper, we introduce an Adversarial Purification Model rooted in latent representation compression, aimed at enhancing the robustness of deep learning models. Initially, we employ an encoder-decoder architecture inspired by the U-net to extract features from input samples. Subsequently, these features undergo a process of information compression to remove adversarial perturbations from the latent space. To counteract the model's tendency to overly focus on fine-grained details of input samples, resulting in ineffective adversarial sample purification, an early freezing mechanism is introduced during the encoder training process. We tested our model's ability to purify adversarial samples generated from the CIFAR-10, CIFAR-100, and ImageNet datasets using various methods. These samples were then used to test ResNet, an image recognition classifiers. Our experiments covered different resolutions and attack types to fully assess LRCM's effectiveness against adversarial attacks. We also compared LRCM with other defence strategies, demonstrating its strong defensive capabilities.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf