血液学代谢:技术进步为疾病生物学和治疗开辟了新的视角

IF 7.6 2区 医学 Q1 HEMATOLOGY
HemaSphere Pub Date : 2025-05-19 DOI:10.1002/hem3.70134
Eileen Haring, Joerg M. Buescher, Petya Apostolova
{"title":"血液学代谢:技术进步为疾病生物学和治疗开辟了新的视角","authors":"Eileen Haring,&nbsp;Joerg M. Buescher,&nbsp;Petya Apostolova","doi":"10.1002/hem3.70134","DOIUrl":null,"url":null,"abstract":"<p>The term metabolism refers to the multi-faceted biochemical reactions within a cell or an organism that occur to maintain energy homeostasis, cell growth, and oxidative balance. Cells possess a high metabolic plasticity, allowing them to adapt to the dynamic requirements of their functional state and environment. Deregulated cellular metabolism is a hallmark of many diseases, including benign and malignant hematological conditions. In the last decade, multiple technological innovations in the metabolism field have made in-depth metabolic analysis broadly applicable. Such studies are shedding new light on normal and malignant hematopoiesis and open avenues to a better understanding of the biology of hematological diseases. In this review, we will first give a brief overview of central metabolic processes. Furthermore, we discuss the most commonly used methods to study metabolism. We begin by elaborating on the use of next-generation sequencing to detect metabolism-related genomic mutations and study transcriptional signatures. Furthermore, we discuss methods for measuring protein expression, such as mass spectrometry (MS), flow cytometry, and cytometry time-of-flight. Next, we describe the use of nuclear magnetic resonance spectroscopy, MS, and flow cytometry for metabolite quantification. Finally, we highlight functional assays to probe metabolic pathways in real-time. We illustrate how these technologies and their combination have advanced our understanding of the role of metabolism. Our goal is to provide hematologists with a comprehensive guide to modern techniques in metabolism research, their benefits and disadvantages, and how they guide our understanding of disease and potentially future personalized therapy decisions.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 5","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70134","citationCount":"0","resultStr":"{\"title\":\"Metabolism in hematology: Technological advances open new perspectives on disease biology and treatment\",\"authors\":\"Eileen Haring,&nbsp;Joerg M. Buescher,&nbsp;Petya Apostolova\",\"doi\":\"10.1002/hem3.70134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The term metabolism refers to the multi-faceted biochemical reactions within a cell or an organism that occur to maintain energy homeostasis, cell growth, and oxidative balance. Cells possess a high metabolic plasticity, allowing them to adapt to the dynamic requirements of their functional state and environment. Deregulated cellular metabolism is a hallmark of many diseases, including benign and malignant hematological conditions. In the last decade, multiple technological innovations in the metabolism field have made in-depth metabolic analysis broadly applicable. Such studies are shedding new light on normal and malignant hematopoiesis and open avenues to a better understanding of the biology of hematological diseases. In this review, we will first give a brief overview of central metabolic processes. Furthermore, we discuss the most commonly used methods to study metabolism. We begin by elaborating on the use of next-generation sequencing to detect metabolism-related genomic mutations and study transcriptional signatures. Furthermore, we discuss methods for measuring protein expression, such as mass spectrometry (MS), flow cytometry, and cytometry time-of-flight. Next, we describe the use of nuclear magnetic resonance spectroscopy, MS, and flow cytometry for metabolite quantification. Finally, we highlight functional assays to probe metabolic pathways in real-time. We illustrate how these technologies and their combination have advanced our understanding of the role of metabolism. Our goal is to provide hematologists with a comprehensive guide to modern techniques in metabolism research, their benefits and disadvantages, and how they guide our understanding of disease and potentially future personalized therapy decisions.</p>\",\"PeriodicalId\":12982,\"journal\":{\"name\":\"HemaSphere\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HemaSphere\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70134\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70134","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢是指细胞或生物体内发生的维持能量稳态、细胞生长和氧化平衡的多方面生化反应。细胞具有高度的代谢可塑性,使其能够适应其功能状态和环境的动态要求。细胞代谢失调是许多疾病的标志,包括良性和恶性血液病。近十年来,代谢领域的多项技术创新使得深度代谢分析得到了广泛应用。这些研究为正常和恶性造血提供了新的线索,并为更好地理解血液病的生物学开辟了道路。在这篇综述中,我们将首先简要概述中枢代谢过程。此外,我们还讨论了最常用的研究代谢的方法。我们首先阐述了使用下一代测序来检测代谢相关的基因组突变和研究转录特征。此外,我们讨论了测量蛋白质表达的方法,如质谱(MS),流式细胞术和细胞术飞行时间。接下来,我们描述了使用核磁共振波谱、质谱和流式细胞术进行代谢物定量。最后,我们强调功能分析,以实时探测代谢途径。我们说明了这些技术及其组合如何促进了我们对新陈代谢作用的理解。我们的目标是为血液学家提供代谢研究中的现代技术的综合指南,它们的优点和缺点,以及它们如何指导我们对疾病的理解和未来潜在的个性化治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolism in hematology: Technological advances open new perspectives on disease biology and treatment

The term metabolism refers to the multi-faceted biochemical reactions within a cell or an organism that occur to maintain energy homeostasis, cell growth, and oxidative balance. Cells possess a high metabolic plasticity, allowing them to adapt to the dynamic requirements of their functional state and environment. Deregulated cellular metabolism is a hallmark of many diseases, including benign and malignant hematological conditions. In the last decade, multiple technological innovations in the metabolism field have made in-depth metabolic analysis broadly applicable. Such studies are shedding new light on normal and malignant hematopoiesis and open avenues to a better understanding of the biology of hematological diseases. In this review, we will first give a brief overview of central metabolic processes. Furthermore, we discuss the most commonly used methods to study metabolism. We begin by elaborating on the use of next-generation sequencing to detect metabolism-related genomic mutations and study transcriptional signatures. Furthermore, we discuss methods for measuring protein expression, such as mass spectrometry (MS), flow cytometry, and cytometry time-of-flight. Next, we describe the use of nuclear magnetic resonance spectroscopy, MS, and flow cytometry for metabolite quantification. Finally, we highlight functional assays to probe metabolic pathways in real-time. We illustrate how these technologies and their combination have advanced our understanding of the role of metabolism. Our goal is to provide hematologists with a comprehensive guide to modern techniques in metabolism research, their benefits and disadvantages, and how they guide our understanding of disease and potentially future personalized therapy decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HemaSphere
HemaSphere Medicine-Hematology
CiteScore
6.10
自引率
4.50%
发文量
2776
审稿时长
7 weeks
期刊介绍: HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology. In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care. Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信