线性回归系数估计的序贯学习方法及其在在线销售考核中的应用

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jun Hu, Yan Zhuang, Shunan Zhao
{"title":"线性回归系数估计的序贯学习方法及其在在线销售考核中的应用","authors":"Jun Hu,&nbsp;Yan Zhuang,&nbsp;Shunan Zhao","doi":"10.1002/asmb.2903","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the problem of estimating coefficients in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sequential Learning Procedure for Estimating Coefficients in Linear Regression With Applications to Online Sales Examination\",\"authors\":\"Jun Hu,&nbsp;Yan Zhuang,&nbsp;Shunan Zhao\",\"doi\":\"10.1002/asmb.2903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider the problem of estimating coefficients in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.</p>\\n </div>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2903\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2903","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究线性回归模型中系数的估计问题。在具有独立正态误差的广泛使用的高斯-马尔可夫设置下,我们提出了一个顺序学习过程来确定实现给定小估计风险的样本量。该方法具有二阶效率和风险效率,并通过蒙特卡罗仿真研究进行了验证。利用电子商务数据,对影响网络销售的因素进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequential Learning Procedure for Estimating Coefficients in Linear Regression With Applications to Online Sales Examination

In this paper, we consider the problem of estimating coefficients in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信