Peng Liu, Yili Hong, Luis A. Escobar, William Q. Meeker
{"title":"疲劳寿命分布和疲劳强度分布的似然置信带的等价性","authors":"Peng Liu, Yili Hong, Luis A. Escobar, William Q. Meeker","doi":"10.1002/asmb.2911","DOIUrl":null,"url":null,"abstract":"<p>Fatigue data arise in many research and applied areas, and there have been statistical methods developed to model and analyze such data. The distributions of fatigue life and fatigue strength are often of interest to engineers designing products that might fail due to fatigue from cyclic-stress loading. Based on a specified statistical model and the maximum likelihood method, the cumulative distribution function (cdf) and quantile function (qf) can be estimated for the fatigue-life and fatigue-strength distributions. Likelihood-based confidence bands can then be obtained for the cdf and qf. This paper provides equivalence results for confidence bands for fatigue-life and fatigue-strength models. These results are useful for data analysis and computing implementation. We show (a) the equivalence of the confidence bands for the fatigue-life cdf and the fatigue-life qf, (b) the equivalence of confidence bands for the fatigue-strength cdf and the fatigue-strength qf, and (c) the equivalence of confidence bands for the fatigue-life qf and the fatigue-strength qf. Then we illustrate the usefulness of those equivalence results with two examples using experimental fatigue data.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2911","citationCount":"0","resultStr":"{\"title\":\"On the Equivalence of Likelihood-Based Confidence Bands for Fatigue-Life and Fatigue-Strength Distributions\",\"authors\":\"Peng Liu, Yili Hong, Luis A. Escobar, William Q. Meeker\",\"doi\":\"10.1002/asmb.2911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fatigue data arise in many research and applied areas, and there have been statistical methods developed to model and analyze such data. The distributions of fatigue life and fatigue strength are often of interest to engineers designing products that might fail due to fatigue from cyclic-stress loading. Based on a specified statistical model and the maximum likelihood method, the cumulative distribution function (cdf) and quantile function (qf) can be estimated for the fatigue-life and fatigue-strength distributions. Likelihood-based confidence bands can then be obtained for the cdf and qf. This paper provides equivalence results for confidence bands for fatigue-life and fatigue-strength models. These results are useful for data analysis and computing implementation. We show (a) the equivalence of the confidence bands for the fatigue-life cdf and the fatigue-life qf, (b) the equivalence of confidence bands for the fatigue-strength cdf and the fatigue-strength qf, and (c) the equivalence of confidence bands for the fatigue-life qf and the fatigue-strength qf. Then we illustrate the usefulness of those equivalence results with two examples using experimental fatigue data.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2911\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2911\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the Equivalence of Likelihood-Based Confidence Bands for Fatigue-Life and Fatigue-Strength Distributions
Fatigue data arise in many research and applied areas, and there have been statistical methods developed to model and analyze such data. The distributions of fatigue life and fatigue strength are often of interest to engineers designing products that might fail due to fatigue from cyclic-stress loading. Based on a specified statistical model and the maximum likelihood method, the cumulative distribution function (cdf) and quantile function (qf) can be estimated for the fatigue-life and fatigue-strength distributions. Likelihood-based confidence bands can then be obtained for the cdf and qf. This paper provides equivalence results for confidence bands for fatigue-life and fatigue-strength models. These results are useful for data analysis and computing implementation. We show (a) the equivalence of the confidence bands for the fatigue-life cdf and the fatigue-life qf, (b) the equivalence of confidence bands for the fatigue-strength cdf and the fatigue-strength qf, and (c) the equivalence of confidence bands for the fatigue-life qf and the fatigue-strength qf. Then we illustrate the usefulness of those equivalence results with two examples using experimental fatigue data.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.