{"title":"测量预测模型对软件项目的影响:基于度量的缺陷严重性预测模型的成本、服务时间和风险评估","authors":"Umamaheswara Sharma B, Ravichandra Sadam","doi":"10.1007/s10515-025-00519-3","DOIUrl":null,"url":null,"abstract":"<div><p>In a critical software system, the testers have to spend an enormous amount of time and effort maintaining the software due to the continuous occurrence of defects. To reduce the time and effort of a tester, prior works in the literature are limited to using documented defect reports to automatically predict the severity of the defective software modules. In contrast, in this work, we propose a metric-based software defect severity prediction (SDSP) model that is built using a decision-tree incorporated self-training semi-supervised learning approach to classify the severity of the defective software modules. Empirical analysis of the proposed model on the AEEEM datasets suggests using the proposed approach as it successfully assigns suitable severity class labels to the unlabelled modules. On the other hand, numerous research studies have addressed the methodological aspects of SDSP models, but the gap in estimating the performance of a developed prediction using suitable measures remains unattempt. For this, we propose the risk factor, per cent of the saved budget, loss in the saved budget, per cent of remaining edits, per cent of remaining edits, remaining service time, and gratuitous service time, to interpret the predictions in terms of project objectives. Empirical analysis of the proposed approach shows the benefit of using the proposed measures in addition to the traditional measures.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the impact of predictive models on the software project: A cost, service time, and risk evaluation of a metric-based defect severity prediction model\",\"authors\":\"Umamaheswara Sharma B, Ravichandra Sadam\",\"doi\":\"10.1007/s10515-025-00519-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a critical software system, the testers have to spend an enormous amount of time and effort maintaining the software due to the continuous occurrence of defects. To reduce the time and effort of a tester, prior works in the literature are limited to using documented defect reports to automatically predict the severity of the defective software modules. In contrast, in this work, we propose a metric-based software defect severity prediction (SDSP) model that is built using a decision-tree incorporated self-training semi-supervised learning approach to classify the severity of the defective software modules. Empirical analysis of the proposed model on the AEEEM datasets suggests using the proposed approach as it successfully assigns suitable severity class labels to the unlabelled modules. On the other hand, numerous research studies have addressed the methodological aspects of SDSP models, but the gap in estimating the performance of a developed prediction using suitable measures remains unattempt. For this, we propose the risk factor, per cent of the saved budget, loss in the saved budget, per cent of remaining edits, per cent of remaining edits, remaining service time, and gratuitous service time, to interpret the predictions in terms of project objectives. Empirical analysis of the proposed approach shows the benefit of using the proposed measures in addition to the traditional measures.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"32 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-025-00519-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00519-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Measuring the impact of predictive models on the software project: A cost, service time, and risk evaluation of a metric-based defect severity prediction model
In a critical software system, the testers have to spend an enormous amount of time and effort maintaining the software due to the continuous occurrence of defects. To reduce the time and effort of a tester, prior works in the literature are limited to using documented defect reports to automatically predict the severity of the defective software modules. In contrast, in this work, we propose a metric-based software defect severity prediction (SDSP) model that is built using a decision-tree incorporated self-training semi-supervised learning approach to classify the severity of the defective software modules. Empirical analysis of the proposed model on the AEEEM datasets suggests using the proposed approach as it successfully assigns suitable severity class labels to the unlabelled modules. On the other hand, numerous research studies have addressed the methodological aspects of SDSP models, but the gap in estimating the performance of a developed prediction using suitable measures remains unattempt. For this, we propose the risk factor, per cent of the saved budget, loss in the saved budget, per cent of remaining edits, per cent of remaining edits, remaining service time, and gratuitous service time, to interpret the predictions in terms of project objectives. Empirical analysis of the proposed approach shows the benefit of using the proposed measures in addition to the traditional measures.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.