{"title":"分数极大函数对易子的bloom型估计","authors":"Jie Sun, Jianglong Wu, Pu Zhang","doi":"10.1007/s00013-025-02111-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(0<\\alpha <n\\)</span> and <span>\\(M_{\\alpha }\\)</span> be the fractional maximal function. For a locally integrable function <i>b</i>, we denote by <span>\\(M_{\\alpha ,b}\\)</span> and <span>\\([b,M_{\\alpha }]\\)</span> the maximal commutator and the commutator of <span>\\(M_{\\alpha }\\)</span> with <i>b</i>. In this paper, we consider Bloom-type estimates for <span>\\(M_{\\alpha ,b}\\)</span> and <span>\\([b,M_{\\alpha }]\\)</span>. Some necessary and sufficient conditions to characterize the Bloom-type two-weight norm inequalities are given.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 6","pages":"661 - 673"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bloom-type estimates for commutators of the fractional maximal function\",\"authors\":\"Jie Sun, Jianglong Wu, Pu Zhang\",\"doi\":\"10.1007/s00013-025-02111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(0<\\\\alpha <n\\\\)</span> and <span>\\\\(M_{\\\\alpha }\\\\)</span> be the fractional maximal function. For a locally integrable function <i>b</i>, we denote by <span>\\\\(M_{\\\\alpha ,b}\\\\)</span> and <span>\\\\([b,M_{\\\\alpha }]\\\\)</span> the maximal commutator and the commutator of <span>\\\\(M_{\\\\alpha }\\\\)</span> with <i>b</i>. In this paper, we consider Bloom-type estimates for <span>\\\\(M_{\\\\alpha ,b}\\\\)</span> and <span>\\\\([b,M_{\\\\alpha }]\\\\)</span>. Some necessary and sufficient conditions to characterize the Bloom-type two-weight norm inequalities are given.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 6\",\"pages\":\"661 - 673\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02111-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02111-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Bloom-type estimates for commutators of the fractional maximal function
Let \(0<\alpha <n\) and \(M_{\alpha }\) be the fractional maximal function. For a locally integrable function b, we denote by \(M_{\alpha ,b}\) and \([b,M_{\alpha }]\) the maximal commutator and the commutator of \(M_{\alpha }\) with b. In this paper, we consider Bloom-type estimates for \(M_{\alpha ,b}\) and \([b,M_{\alpha }]\). Some necessary and sufficient conditions to characterize the Bloom-type two-weight norm inequalities are given.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.