分数极大函数对易子的bloom型估计

IF 0.5 4区 数学 Q3 MATHEMATICS
Jie Sun, Jianglong Wu, Pu Zhang
{"title":"分数极大函数对易子的bloom型估计","authors":"Jie Sun,&nbsp;Jianglong Wu,&nbsp;Pu Zhang","doi":"10.1007/s00013-025-02111-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(0&lt;\\alpha &lt;n\\)</span> and <span>\\(M_{\\alpha }\\)</span> be the fractional maximal function. For a locally integrable function <i>b</i>, we denote by <span>\\(M_{\\alpha ,b}\\)</span> and <span>\\([b,M_{\\alpha }]\\)</span> the maximal commutator and the commutator of <span>\\(M_{\\alpha }\\)</span> with <i>b</i>. In this paper, we consider Bloom-type estimates for <span>\\(M_{\\alpha ,b}\\)</span> and <span>\\([b,M_{\\alpha }]\\)</span>. Some necessary and sufficient conditions to characterize the Bloom-type two-weight norm inequalities are given.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 6","pages":"661 - 673"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bloom-type estimates for commutators of the fractional maximal function\",\"authors\":\"Jie Sun,&nbsp;Jianglong Wu,&nbsp;Pu Zhang\",\"doi\":\"10.1007/s00013-025-02111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(0&lt;\\\\alpha &lt;n\\\\)</span> and <span>\\\\(M_{\\\\alpha }\\\\)</span> be the fractional maximal function. For a locally integrable function <i>b</i>, we denote by <span>\\\\(M_{\\\\alpha ,b}\\\\)</span> and <span>\\\\([b,M_{\\\\alpha }]\\\\)</span> the maximal commutator and the commutator of <span>\\\\(M_{\\\\alpha }\\\\)</span> with <i>b</i>. In this paper, we consider Bloom-type estimates for <span>\\\\(M_{\\\\alpha ,b}\\\\)</span> and <span>\\\\([b,M_{\\\\alpha }]\\\\)</span>. Some necessary and sufficient conditions to characterize the Bloom-type two-weight norm inequalities are given.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 6\",\"pages\":\"661 - 673\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02111-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02111-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(0<\alpha <n\)和\(M_{\alpha }\)为分数极大函数。对于一个局部可积函数b,我们用\(M_{\alpha ,b}\)和\([b,M_{\alpha }]\)表示了\(M_{\alpha }\)与b的最大对易子和对易子。本文考虑了\(M_{\alpha ,b}\)和\([b,M_{\alpha }]\)的bloom型估计。给出了表征布卢姆型双权范数不等式的几个充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Bloom-type estimates for commutators of the fractional maximal function

Let \(0<\alpha <n\) and \(M_{\alpha }\) be the fractional maximal function. For a locally integrable function b, we denote by \(M_{\alpha ,b}\) and \([b,M_{\alpha }]\) the maximal commutator and the commutator of \(M_{\alpha }\) with b. In this paper, we consider Bloom-type estimates for \(M_{\alpha ,b}\) and \([b,M_{\alpha }]\). Some necessary and sufficient conditions to characterize the Bloom-type two-weight norm inequalities are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信