Sardor Murodov, Ashfaque H. Bokhari, Javlon Rayimbaev, Bobomurat Ahmedov
{"title":"磁化Bocharova-Bronnikov-Melnikov-Bekenstein黑洞周围带电粒子的QPOs测试和圆周运动","authors":"Sardor Murodov, Ashfaque H. Bokhari, Javlon Rayimbaev, Bobomurat Ahmedov","doi":"10.1140/epjc/s10052-025-14298-4","DOIUrl":null,"url":null,"abstract":"<div><p>Testing gravity theories beyond General Relativity (GR) is crucial for a deeper understanding of fundamental physics, especially in the strong gravitational field regime around astrophysical compact objects. This work examines quasi-periodic oscillations (QPOs) generated by charged particles orbiting magnetized Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) black holes. We study charged particles’ circular orbits, deriving expressions for energy and angular momentum influenced by scalar and magnetic interactions, and investigate the innermost stable circular orbit (ISCO). Using the relativistic precession (RP) model, we derive the fundamental orbital, radial, and vertical frequencies of charged particle oscillations, highlighting deviations caused by conformal scalar and magnetic interactions. Our analysis shows that the conformally coupled scalar field significantly modifies the spacetime curvature, producing a repulsive gravitational effect that shifts stable orbits outward, thereby reducing the radial oscillation frequency. Using observational QPO data from well-known astrophysical sources-GRS 1915+105, GRO J1655-40, M82 X-1, and Sgr A*-we performed Markov Chain Monte Carlo (MCMC) simulations to constrain black hole mass, scalar coupling, magnetic interaction, and orbital radius parameters. Our results reveal significant deviations from standard General Relativity predictions, offering clear evidence of scalar and magnetic field influences. These findings indicate that scalar and magnetic fields produce observable shifts in QPO frequencies, providing promising observational signatures to test alternative gravitational theories in extreme astrophysical environments.\n\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14298-4.pdf","citationCount":"0","resultStr":"{\"title\":\"QPOs tests and circular motions of charged particles around magnetized Bocharova–Bronnikov–Melnikov–Bekenstein black holes\",\"authors\":\"Sardor Murodov, Ashfaque H. Bokhari, Javlon Rayimbaev, Bobomurat Ahmedov\",\"doi\":\"10.1140/epjc/s10052-025-14298-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Testing gravity theories beyond General Relativity (GR) is crucial for a deeper understanding of fundamental physics, especially in the strong gravitational field regime around astrophysical compact objects. This work examines quasi-periodic oscillations (QPOs) generated by charged particles orbiting magnetized Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) black holes. We study charged particles’ circular orbits, deriving expressions for energy and angular momentum influenced by scalar and magnetic interactions, and investigate the innermost stable circular orbit (ISCO). Using the relativistic precession (RP) model, we derive the fundamental orbital, radial, and vertical frequencies of charged particle oscillations, highlighting deviations caused by conformal scalar and magnetic interactions. Our analysis shows that the conformally coupled scalar field significantly modifies the spacetime curvature, producing a repulsive gravitational effect that shifts stable orbits outward, thereby reducing the radial oscillation frequency. Using observational QPO data from well-known astrophysical sources-GRS 1915+105, GRO J1655-40, M82 X-1, and Sgr A*-we performed Markov Chain Monte Carlo (MCMC) simulations to constrain black hole mass, scalar coupling, magnetic interaction, and orbital radius parameters. Our results reveal significant deviations from standard General Relativity predictions, offering clear evidence of scalar and magnetic field influences. These findings indicate that scalar and magnetic fields produce observable shifts in QPO frequencies, providing promising observational signatures to test alternative gravitational theories in extreme astrophysical environments.\\n\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14298-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14298-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14298-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
QPOs tests and circular motions of charged particles around magnetized Bocharova–Bronnikov–Melnikov–Bekenstein black holes
Testing gravity theories beyond General Relativity (GR) is crucial for a deeper understanding of fundamental physics, especially in the strong gravitational field regime around astrophysical compact objects. This work examines quasi-periodic oscillations (QPOs) generated by charged particles orbiting magnetized Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) black holes. We study charged particles’ circular orbits, deriving expressions for energy and angular momentum influenced by scalar and magnetic interactions, and investigate the innermost stable circular orbit (ISCO). Using the relativistic precession (RP) model, we derive the fundamental orbital, radial, and vertical frequencies of charged particle oscillations, highlighting deviations caused by conformal scalar and magnetic interactions. Our analysis shows that the conformally coupled scalar field significantly modifies the spacetime curvature, producing a repulsive gravitational effect that shifts stable orbits outward, thereby reducing the radial oscillation frequency. Using observational QPO data from well-known astrophysical sources-GRS 1915+105, GRO J1655-40, M82 X-1, and Sgr A*-we performed Markov Chain Monte Carlo (MCMC) simulations to constrain black hole mass, scalar coupling, magnetic interaction, and orbital radius parameters. Our results reveal significant deviations from standard General Relativity predictions, offering clear evidence of scalar and magnetic field influences. These findings indicate that scalar and magnetic fields produce observable shifts in QPO frequencies, providing promising observational signatures to test alternative gravitational theories in extreme astrophysical environments.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.