MacMahonesque配分函数检测与素数相关的集合

IF 0.5 4区 数学 Q3 MATHEMATICS
Kevin Gomez
{"title":"MacMahonesque配分函数检测与素数相关的集合","authors":"Kevin Gomez","doi":"10.1007/s00013-025-02109-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recent work by Craig, van Ittersum, and Ono constructs explicit expressions in the partition functions of MacMahon that detect the prime numbers. Furthermore, they define generalizations, the MacMahonesque functions, and prove there are infinitely many such expressions in these functions. Here, we show how to modify and adapt their construction to detect cubes of primes as well as primes in arithmetic progressions.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 6","pages":"637 - 652"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02109-x.pdf","citationCount":"0","resultStr":"{\"title\":\"MacMahonesque partition functions detect sets related to primes\",\"authors\":\"Kevin Gomez\",\"doi\":\"10.1007/s00013-025-02109-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent work by Craig, van Ittersum, and Ono constructs explicit expressions in the partition functions of MacMahon that detect the prime numbers. Furthermore, they define generalizations, the MacMahonesque functions, and prove there are infinitely many such expressions in these functions. Here, we show how to modify and adapt their construction to detect cubes of primes as well as primes in arithmetic progressions.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 6\",\"pages\":\"637 - 652\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02109-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02109-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02109-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Craig, van Ittersum和Ono最近的工作在MacMahon的配分函数中构造了检测素数的显式表达式。进一步,他们定义了广义的MacMahonesque函数,并证明了在这些函数中有无限多个这样的表达式。在这里,我们展示了如何修改和调整它们的结构来检测质数的立方以及等差数列中的质数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MacMahonesque partition functions detect sets related to primes

Recent work by Craig, van Ittersum, and Ono constructs explicit expressions in the partition functions of MacMahon that detect the prime numbers. Furthermore, they define generalizations, the MacMahonesque functions, and prove there are infinitely many such expressions in these functions. Here, we show how to modify and adapt their construction to detect cubes of primes as well as primes in arithmetic progressions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信