用固定残数计算微分

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dawei Chen, Miguel Prado
{"title":"用固定残数计算微分","authors":"Dawei Chen,&nbsp;Miguel Prado","doi":"10.1007/s11005-025-01940-1","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the count of meromorphic differentials on the Riemann sphere possessing a single zero, multiple poles with prescribed orders and fixed residues at each pole. Gendron and Tahar previously examined this problem with respect to general residues using flat geometry, while Sugiyama approached it from the perspective of fixed point multipliers of polynomial maps in the case of simple poles. In our study, we employ intersection theory on compactified moduli spaces of differentials, enabling us to handle arbitrary residues and pole orders, which provides a complete solution to this problem. We also determine interesting combinatorial properties for the solution formula as well as related intersection numbers.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting differentials with fixed residues\",\"authors\":\"Dawei Chen,&nbsp;Miguel Prado\",\"doi\":\"10.1007/s11005-025-01940-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the count of meromorphic differentials on the Riemann sphere possessing a single zero, multiple poles with prescribed orders and fixed residues at each pole. Gendron and Tahar previously examined this problem with respect to general residues using flat geometry, while Sugiyama approached it from the perspective of fixed point multipliers of polynomial maps in the case of simple poles. In our study, we employ intersection theory on compactified moduli spaces of differentials, enabling us to handle arbitrary residues and pole orders, which provides a complete solution to this problem. We also determine interesting combinatorial properties for the solution formula as well as related intersection numbers.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01940-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01940-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了黎曼球上具有单零、多个定阶极点和每个极点上的固定残数的亚纯微分的数量。Gendron和Tahar先前使用平面几何研究了关于一般残数的这个问题,而Sugiyama在简单极点的情况下从多项式映射的不动点乘子的角度来解决这个问题。在我们的研究中,我们将交点理论应用于微分的紧化模空间,使我们能够处理任意残数和极点阶,从而完整地解决了这个问题。我们还确定了解公式的有趣的组合性质以及相关的交点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting differentials with fixed residues

We investigate the count of meromorphic differentials on the Riemann sphere possessing a single zero, multiple poles with prescribed orders and fixed residues at each pole. Gendron and Tahar previously examined this problem with respect to general residues using flat geometry, while Sugiyama approached it from the perspective of fixed point multipliers of polynomial maps in the case of simple poles. In our study, we employ intersection theory on compactified moduli spaces of differentials, enabling us to handle arbitrary residues and pole orders, which provides a complete solution to this problem. We also determine interesting combinatorial properties for the solution formula as well as related intersection numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信