\(2+1\)维度时空中的分数阶爱因斯坦场方程

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
E. Contreras, A. Di Teodoro, M. Mena
{"title":"\\(2+1\\)维度时空中的分数阶爱因斯坦场方程","authors":"E. Contreras,&nbsp;A. Di Teodoro,&nbsp;M. Mena","doi":"10.1007/s10714-025-03419-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we introduce a new fractional derivative that modifies the conventional Riemann-Liouville operator to obtain a set of fractional Einstein field equations within a 2+1 dimensional spacetime by assuming a static and circularly symmetric metric. The main reason for introducing this new derivative stems from addressing the divergence encountered during the construction of Christoffel symbols when using the Caputo operator and the appearance of unwanted terms when using the Riemann-Liouville derivative because of the well-known fact that its action on constants does not vanish, as expected. The key innovation of the new operator ensures that the derivative of a constant is zero. As a particular application, we explore whether the Bañados-Teitelboim-Zanelli black hole metric is a solution to fractional Einstein equations. Our results reveal that for values of the fractional parameter close to one, the effective matter sector corresponds to a charged BTZ solution with an anisotropic cosmological constant.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03419-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Fractional Einstein field equations in \\\\(2+1\\\\) dimensional spacetime\",\"authors\":\"E. Contreras,&nbsp;A. Di Teodoro,&nbsp;M. Mena\",\"doi\":\"10.1007/s10714-025-03419-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we introduce a new fractional derivative that modifies the conventional Riemann-Liouville operator to obtain a set of fractional Einstein field equations within a 2+1 dimensional spacetime by assuming a static and circularly symmetric metric. The main reason for introducing this new derivative stems from addressing the divergence encountered during the construction of Christoffel symbols when using the Caputo operator and the appearance of unwanted terms when using the Riemann-Liouville derivative because of the well-known fact that its action on constants does not vanish, as expected. The key innovation of the new operator ensures that the derivative of a constant is zero. As a particular application, we explore whether the Bañados-Teitelboim-Zanelli black hole metric is a solution to fractional Einstein equations. Our results reveal that for values of the fractional parameter close to one, the effective matter sector corresponds to a charged BTZ solution with an anisotropic cosmological constant.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-025-03419-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03419-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03419-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了一个新的分数阶导数,它修改了传统的Riemann-Liouville算子,通过假设一个静态和圆对称度量,在2+1维时空内得到一组分数阶爱因斯坦场方程。引入这个新导数的主要原因是为了解决在使用卡普托算子构造克里斯托费尔符号时遇到的分歧,以及使用黎曼-刘维尔导数时出现的不想要的项,因为众所周知的事实是它对常数的作用不会像预期的那样消失。新算子的关键创新是确保常数的导数为零。作为一个特殊的应用,我们探讨了Bañados-Teitelboim-Zanelli黑洞度规是否是分数阶爱因斯坦方程的解。我们的结果表明,当分数参数值接近1时,有效物质扇区对应于具有各向异性宇宙学常数的带电BTZ解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Einstein field equations in \(2+1\) dimensional spacetime

In this work, we introduce a new fractional derivative that modifies the conventional Riemann-Liouville operator to obtain a set of fractional Einstein field equations within a 2+1 dimensional spacetime by assuming a static and circularly symmetric metric. The main reason for introducing this new derivative stems from addressing the divergence encountered during the construction of Christoffel symbols when using the Caputo operator and the appearance of unwanted terms when using the Riemann-Liouville derivative because of the well-known fact that its action on constants does not vanish, as expected. The key innovation of the new operator ensures that the derivative of a constant is zero. As a particular application, we explore whether the Bañados-Teitelboim-Zanelli black hole metric is a solution to fractional Einstein equations. Our results reveal that for values of the fractional parameter close to one, the effective matter sector corresponds to a charged BTZ solution with an anisotropic cosmological constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信