\(B\rightarrow D\)矢量形状因子拟合中的足迹及d介子导扭LCDA的确定

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Sheng-Bo Wu, Hai-Jiang Tian, Yin-Long Yang, Wei Cheng, Hai-Bing Fu, Tao Zhong
{"title":"\\(B\\rightarrow D\\)矢量形状因子拟合中的足迹及d介子导扭LCDA的确定","authors":"Sheng-Bo Wu,&nbsp;Hai-Jiang Tian,&nbsp;Yin-Long Yang,&nbsp;Wei Cheng,&nbsp;Hai-Bing Fu,&nbsp;Tao Zhong","doi":"10.1140/epjc/s10052-025-14275-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we fit the <span>\\(B\\rightarrow D\\)</span> vector transition form factor (TFF) by using the data measured by <i>BABAR</i> and Belle Collaborations within Monte Carlo (MC) method. Meanwhile, the <span>\\(B\\rightarrow D\\)</span> TFF is also calculated by using the QCD light-cone sum rules approach (LCSRs) within right-handed chiral current correlation function. In the TFF, <i>D</i>-meson leading-twist light-cone distribution amplitude (LCDA) is the most important non-perturbative input parameter, the precise behavior of which is mainly determined by the parameter <span>\\(B_{2;D}\\)</span> in the light-cone harmonic oscillator model. Through fitting the TFF, we determine the value <span>\\(B_{2;D}=0.445\\)</span>. Then, we present the curve of <i>D</i>-meson leading-twist LCDA in comparison with other theoretical approaches. Subsequently, the <span>\\(B\\rightarrow D\\)</span> TFF <span>\\(f_{+}^{BD}(q^2)\\)</span> at the large recoil region is <span>\\(f_{+}^{BD}(0)=0.648_{-0.063}^{+0.067}\\)</span>, which is compared in detail with theoretical estimates and experimental measurements. Furthermore, we calculated the decay width and branching fractions of the Cabibbo-favored semileptonic decays <span>\\(B\\rightarrow D\\ell ^+\\nu _{\\ell }\\)</span>, which lead to the results <span>\\({\\mathcal {B}}(B^0\\rightarrow D^-\\ell ^+\\nu _{\\ell }) =(2.10_{-0.38}^{+0.44})\\times 10^{-2}\\)</span> and <span>\\({\\mathcal {B}}(B^+\\rightarrow {\\bar{D}}^0\\ell ^+\\nu _{\\ell }) =(2.26_{-0.41}^{+0.48})\\times 10^{-2}\\)</span>. Finally, we predict the CKM matrix element with two scenarios <span>\\(|V_{cb}|_{\\textrm{SR}}=41.55_{-4.50}^{+4.91}\\times 10^{-3}\\)</span> and <span>\\(|V_{cb} |_{\\textrm{MC}}=41.47_{-2.66}^{+2.55 }\\times 10^{-3}\\)</span> from <span>\\(B^0\\rightarrow D^-\\ell ^+\\nu _{\\ell }\\)</span>, <span>\\(|V_{cb}|_{\\textrm{SR}}=40.54_{-3.80}^{+4.33}\\times 10^{-3}\\)</span> and <span>\\(|V_{cb} |_{\\textrm{MC}}=40.46_{-1.38}^{+1.40}\\times 10^{-3}\\)</span> from <span>\\(B^+\\rightarrow {\\bar{D}}^0\\ell ^+\\nu _{\\ell }\\)</span> which are in good agreement with theoretical and experimental predictions.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14275-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Footprint in fitting \\\\(B\\\\rightarrow D\\\\) vector form factor and determination for D-meson leading-twist LCDA\",\"authors\":\"Sheng-Bo Wu,&nbsp;Hai-Jiang Tian,&nbsp;Yin-Long Yang,&nbsp;Wei Cheng,&nbsp;Hai-Bing Fu,&nbsp;Tao Zhong\",\"doi\":\"10.1140/epjc/s10052-025-14275-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we fit the <span>\\\\(B\\\\rightarrow D\\\\)</span> vector transition form factor (TFF) by using the data measured by <i>BABAR</i> and Belle Collaborations within Monte Carlo (MC) method. Meanwhile, the <span>\\\\(B\\\\rightarrow D\\\\)</span> TFF is also calculated by using the QCD light-cone sum rules approach (LCSRs) within right-handed chiral current correlation function. In the TFF, <i>D</i>-meson leading-twist light-cone distribution amplitude (LCDA) is the most important non-perturbative input parameter, the precise behavior of which is mainly determined by the parameter <span>\\\\(B_{2;D}\\\\)</span> in the light-cone harmonic oscillator model. Through fitting the TFF, we determine the value <span>\\\\(B_{2;D}=0.445\\\\)</span>. Then, we present the curve of <i>D</i>-meson leading-twist LCDA in comparison with other theoretical approaches. Subsequently, the <span>\\\\(B\\\\rightarrow D\\\\)</span> TFF <span>\\\\(f_{+}^{BD}(q^2)\\\\)</span> at the large recoil region is <span>\\\\(f_{+}^{BD}(0)=0.648_{-0.063}^{+0.067}\\\\)</span>, which is compared in detail with theoretical estimates and experimental measurements. Furthermore, we calculated the decay width and branching fractions of the Cabibbo-favored semileptonic decays <span>\\\\(B\\\\rightarrow D\\\\ell ^+\\\\nu _{\\\\ell }\\\\)</span>, which lead to the results <span>\\\\({\\\\mathcal {B}}(B^0\\\\rightarrow D^-\\\\ell ^+\\\\nu _{\\\\ell }) =(2.10_{-0.38}^{+0.44})\\\\times 10^{-2}\\\\)</span> and <span>\\\\({\\\\mathcal {B}}(B^+\\\\rightarrow {\\\\bar{D}}^0\\\\ell ^+\\\\nu _{\\\\ell }) =(2.26_{-0.41}^{+0.48})\\\\times 10^{-2}\\\\)</span>. Finally, we predict the CKM matrix element with two scenarios <span>\\\\(|V_{cb}|_{\\\\textrm{SR}}=41.55_{-4.50}^{+4.91}\\\\times 10^{-3}\\\\)</span> and <span>\\\\(|V_{cb} |_{\\\\textrm{MC}}=41.47_{-2.66}^{+2.55 }\\\\times 10^{-3}\\\\)</span> from <span>\\\\(B^0\\\\rightarrow D^-\\\\ell ^+\\\\nu _{\\\\ell }\\\\)</span>, <span>\\\\(|V_{cb}|_{\\\\textrm{SR}}=40.54_{-3.80}^{+4.33}\\\\times 10^{-3}\\\\)</span> and <span>\\\\(|V_{cb} |_{\\\\textrm{MC}}=40.46_{-1.38}^{+1.40}\\\\times 10^{-3}\\\\)</span> from <span>\\\\(B^+\\\\rightarrow {\\\\bar{D}}^0\\\\ell ^+\\\\nu _{\\\\ell }\\\\)</span> which are in good agreement with theoretical and experimental predictions.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14275-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14275-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14275-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用蒙特卡罗(MC)方法中BABAR和Belle collaboration测量的数据拟合\(B\rightarrow D\)矢量转换形状因子(TFF)。同时,在右手手性电流相关函数中,采用QCD光锥和规则方法(LCSRs)计算\(B\rightarrow D\) TFF。在TFF中,d介子导扭光锥分布幅值(LCDA)是最重要的非摄动输入参数,其精确行为主要由光锥谐振子模型中的\(B_{2;D}\)参数决定。通过拟合TFF,我们确定了值\(B_{2;D}=0.445\)。然后,我们给出了d介子导扭lda的曲线,并与其他理论方法进行了比较。随后,得到了大后坐力区域的\(B\rightarrow D\) TFF \(f_{+}^{BD}(q^2)\)为\(f_{+}^{BD}(0)=0.648_{-0.063}^{+0.067}\),并与理论估计和实验测量结果进行了详细的比较。此外,我们计算了cabibbo青睐的半光子衰变的衰变宽度和分支分数\(B\rightarrow D\ell ^+\nu _{\ell }\),从而得到了结果\({\mathcal {B}}(B^0\rightarrow D^-\ell ^+\nu _{\ell }) =(2.10_{-0.38}^{+0.44})\times 10^{-2}\)和\({\mathcal {B}}(B^+\rightarrow {\bar{D}}^0\ell ^+\nu _{\ell }) =(2.26_{-0.41}^{+0.48})\times 10^{-2}\)。最后,我们用\(B^0\rightarrow D^-\ell ^+\nu _{\ell }\)中的\(|V_{cb}|_{\textrm{SR}}=41.55_{-4.50}^{+4.91}\times 10^{-3}\)和\(|V_{cb} |_{\textrm{MC}}=41.47_{-2.66}^{+2.55 }\times 10^{-3}\), \(B^+\rightarrow {\bar{D}}^0\ell ^+\nu _{\ell }\)中的\(|V_{cb}|_{\textrm{SR}}=40.54_{-3.80}^{+4.33}\times 10^{-3}\)和\(|V_{cb} |_{\textrm{MC}}=40.46_{-1.38}^{+1.40}\times 10^{-3}\)两种情景对CKM矩阵元进行了预测,结果与理论和实验预测吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Footprint in fitting \(B\rightarrow D\) vector form factor and determination for D-meson leading-twist LCDA

In this paper, we fit the \(B\rightarrow D\) vector transition form factor (TFF) by using the data measured by BABAR and Belle Collaborations within Monte Carlo (MC) method. Meanwhile, the \(B\rightarrow D\) TFF is also calculated by using the QCD light-cone sum rules approach (LCSRs) within right-handed chiral current correlation function. In the TFF, D-meson leading-twist light-cone distribution amplitude (LCDA) is the most important non-perturbative input parameter, the precise behavior of which is mainly determined by the parameter \(B_{2;D}\) in the light-cone harmonic oscillator model. Through fitting the TFF, we determine the value \(B_{2;D}=0.445\). Then, we present the curve of D-meson leading-twist LCDA in comparison with other theoretical approaches. Subsequently, the \(B\rightarrow D\) TFF \(f_{+}^{BD}(q^2)\) at the large recoil region is \(f_{+}^{BD}(0)=0.648_{-0.063}^{+0.067}\), which is compared in detail with theoretical estimates and experimental measurements. Furthermore, we calculated the decay width and branching fractions of the Cabibbo-favored semileptonic decays \(B\rightarrow D\ell ^+\nu _{\ell }\), which lead to the results \({\mathcal {B}}(B^0\rightarrow D^-\ell ^+\nu _{\ell }) =(2.10_{-0.38}^{+0.44})\times 10^{-2}\) and \({\mathcal {B}}(B^+\rightarrow {\bar{D}}^0\ell ^+\nu _{\ell }) =(2.26_{-0.41}^{+0.48})\times 10^{-2}\). Finally, we predict the CKM matrix element with two scenarios \(|V_{cb}|_{\textrm{SR}}=41.55_{-4.50}^{+4.91}\times 10^{-3}\) and \(|V_{cb} |_{\textrm{MC}}=41.47_{-2.66}^{+2.55 }\times 10^{-3}\) from \(B^0\rightarrow D^-\ell ^+\nu _{\ell }\), \(|V_{cb}|_{\textrm{SR}}=40.54_{-3.80}^{+4.33}\times 10^{-3}\) and \(|V_{cb} |_{\textrm{MC}}=40.46_{-1.38}^{+1.40}\times 10^{-3}\) from \(B^+\rightarrow {\bar{D}}^0\ell ^+\nu _{\ell }\) which are in good agreement with theoretical and experimental predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信