Linjuan Li;Gang Xie;Haoxue Zhang;Xinlin Xie;Heng Li
{"title":"基于深度互信息的场景分类鲁棒表示学习","authors":"Linjuan Li;Gang Xie;Haoxue Zhang;Xinlin Xie;Heng Li","doi":"10.1109/JSTARS.2025.3564376","DOIUrl":null,"url":null,"abstract":"Remote sensing scene classification enables data-driven decisions for various applications, such as environmental monitoring, urban planning, and disaster management. However, deep learning models used for scene classification are highly vulnerable to adversarial samples, resulting in incorrect predictions and posing significant risks. While most current methods focus on improving adversarial robustness, they face a trade-off that compromises accuracy on clean, unperturbed images. To address this challenge, we utilized information theory by incorporating a mutual information (MI) representation module, which allows the model to capture high-quality, robust features. Furthermore, a domain adversarial training strategy is applied to promote the learning of domain-invariant features, reducing the effect of distribution differences between clean images and adversarial samples. We propose a novel algorithm that accurately differentiates between clean and adversarial scenes by introducing the MI and domain adaptation-guided network. Extensive experiments demonstrate the effectiveness of our approach against adversarial attacks, revealing a positive correlation between adversarial perturbations and image information entropy, and a negative correlation with robust accuracy.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"11963-11978"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977989","citationCount":"0","resultStr":"{\"title\":\"Robust Representation Learning Based on Deep Mutual Information for Scene Classification Against Adversarial Perturbations\",\"authors\":\"Linjuan Li;Gang Xie;Haoxue Zhang;Xinlin Xie;Heng Li\",\"doi\":\"10.1109/JSTARS.2025.3564376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing scene classification enables data-driven decisions for various applications, such as environmental monitoring, urban planning, and disaster management. However, deep learning models used for scene classification are highly vulnerable to adversarial samples, resulting in incorrect predictions and posing significant risks. While most current methods focus on improving adversarial robustness, they face a trade-off that compromises accuracy on clean, unperturbed images. To address this challenge, we utilized information theory by incorporating a mutual information (MI) representation module, which allows the model to capture high-quality, robust features. Furthermore, a domain adversarial training strategy is applied to promote the learning of domain-invariant features, reducing the effect of distribution differences between clean images and adversarial samples. We propose a novel algorithm that accurately differentiates between clean and adversarial scenes by introducing the MI and domain adaptation-guided network. Extensive experiments demonstrate the effectiveness of our approach against adversarial attacks, revealing a positive correlation between adversarial perturbations and image information entropy, and a negative correlation with robust accuracy.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"11963-11978\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977989\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10977989/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10977989/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust Representation Learning Based on Deep Mutual Information for Scene Classification Against Adversarial Perturbations
Remote sensing scene classification enables data-driven decisions for various applications, such as environmental monitoring, urban planning, and disaster management. However, deep learning models used for scene classification are highly vulnerable to adversarial samples, resulting in incorrect predictions and posing significant risks. While most current methods focus on improving adversarial robustness, they face a trade-off that compromises accuracy on clean, unperturbed images. To address this challenge, we utilized information theory by incorporating a mutual information (MI) representation module, which allows the model to capture high-quality, robust features. Furthermore, a domain adversarial training strategy is applied to promote the learning of domain-invariant features, reducing the effect of distribution differences between clean images and adversarial samples. We propose a novel algorithm that accurately differentiates between clean and adversarial scenes by introducing the MI and domain adaptation-guided network. Extensive experiments demonstrate the effectiveness of our approach against adversarial attacks, revealing a positive correlation between adversarial perturbations and image information entropy, and a negative correlation with robust accuracy.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.