半线性慢速粗糙偏微分方程的平均原理

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Miaomiao Li , Yunzhang Li , Bin Pei , Yong Xu
{"title":"半线性慢速粗糙偏微分方程的平均原理","authors":"Miaomiao Li ,&nbsp;Yunzhang Li ,&nbsp;Bin Pei ,&nbsp;Yong Xu","doi":"10.1016/j.spa.2025.104683","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the averaging principle for a class of semilinear slow–fast partial differential equations driven by finite-dimensional rough multiplicative noise. Specifically, the slow component is driven by a general random <span><math><mi>γ</mi></math></span>-Hölder rough path for some <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, while the fast component is driven by an Itô-type Brownian rough path. Using controlled rough path theory and the classical Khasminskii’s time discretization scheme, we demonstrate that the slow component converges strongly to the solution of the corresponding averaged equation under the Hölder topology.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"188 ","pages":"Article 104683"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging principle for semilinear slow–fast rough partial differential equations\",\"authors\":\"Miaomiao Li ,&nbsp;Yunzhang Li ,&nbsp;Bin Pei ,&nbsp;Yong Xu\",\"doi\":\"10.1016/j.spa.2025.104683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the averaging principle for a class of semilinear slow–fast partial differential equations driven by finite-dimensional rough multiplicative noise. Specifically, the slow component is driven by a general random <span><math><mi>γ</mi></math></span>-Hölder rough path for some <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, while the fast component is driven by an Itô-type Brownian rough path. Using controlled rough path theory and the classical Khasminskii’s time discretization scheme, we demonstrate that the slow component converges strongly to the solution of the corresponding averaged equation under the Hölder topology.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"188 \",\"pages\":\"Article 104683\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001243\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001243","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类由有限维粗糙乘性噪声驱动的半线性慢速偏微分方程的平均原理。其中,慢分量由γ∈(1/3,1/2)的一般随机γ-Hölder粗路径驱动,而快分量由Itô-type布朗粗路径驱动。利用控制粗糙路径理论和经典的Khasminskii时间离散格式,证明了在Hölder拓扑下,慢分量强收敛于相应平均方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging principle for semilinear slow–fast rough partial differential equations
In this paper, we investigate the averaging principle for a class of semilinear slow–fast partial differential equations driven by finite-dimensional rough multiplicative noise. Specifically, the slow component is driven by a general random γ-Hölder rough path for some γ(1/3,1/2), while the fast component is driven by an Itô-type Brownian rough path. Using controlled rough path theory and the classical Khasminskii’s time discretization scheme, we demonstrate that the slow component converges strongly to the solution of the corresponding averaged equation under the Hölder topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信