{"title":"带反馈时滞的约束在线凸优化","authors":"Heyan Huang, Ping Wu, Haolin Lu, Zhengyang Liu","doi":"10.1016/j.eswa.2025.127871","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the problem of online convex optimization (OCO) under feedback delay, where feedback for a decision is received after a delay, and long-term constraints, where constraints can be violated in intermediate iterations but must be satisfied over the long run. Existing approaches are primarily limited to fixed delay settings and general convex loss functions. In this paper, we employ a stricter metric based on cumulative constraint violations. We first propose a novel algorithm tailored for the fixed <span><math><mi>d</mi></math></span>-slot delay setting, achieving a regret bound of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>d</mi><mi>T</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> and a cumulative constraint violation of <span><math><mi>O</mi></math></span> (<span><math><msup><mrow><mi>T</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span>), demonstrating superior performance compared to existing results. Moreover, when the loss functions are strongly convex, the regret and violation bounds can be further reduced to <span><math><mi>O</mi></math></span> (<span><math><mrow><mi>d</mi><mo>ln</mo><mi>T</mi></mrow></math></span>) and <span><math><mi>O</mi></math></span> (<span><math><mrow><msqrt><mrow><mi>d</mi></mrow></msqrt><mo>ln</mo><mi>T</mi></mrow></math></span>), respectively. Additionally, we extend our algorithm to the more realistic re-indexed delay setting, achieving <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>d</mi><mi>T</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> regret and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> cumulative constraint violation. Under strong convexity, these bounds are further improved to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>ln</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msqrt><mo>ln</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>max</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mi>T</mi><mo>]</mo></mrow></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> denotes the maximum delay.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"287 ","pages":"Article 127871"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the constrained online convex optimization with feedback delay\",\"authors\":\"Heyan Huang, Ping Wu, Haolin Lu, Zhengyang Liu\",\"doi\":\"10.1016/j.eswa.2025.127871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the problem of online convex optimization (OCO) under feedback delay, where feedback for a decision is received after a delay, and long-term constraints, where constraints can be violated in intermediate iterations but must be satisfied over the long run. Existing approaches are primarily limited to fixed delay settings and general convex loss functions. In this paper, we employ a stricter metric based on cumulative constraint violations. We first propose a novel algorithm tailored for the fixed <span><math><mi>d</mi></math></span>-slot delay setting, achieving a regret bound of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>d</mi><mi>T</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> and a cumulative constraint violation of <span><math><mi>O</mi></math></span> (<span><math><msup><mrow><mi>T</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span>), demonstrating superior performance compared to existing results. Moreover, when the loss functions are strongly convex, the regret and violation bounds can be further reduced to <span><math><mi>O</mi></math></span> (<span><math><mrow><mi>d</mi><mo>ln</mo><mi>T</mi></mrow></math></span>) and <span><math><mi>O</mi></math></span> (<span><math><mrow><msqrt><mrow><mi>d</mi></mrow></msqrt><mo>ln</mo><mi>T</mi></mrow></math></span>), respectively. Additionally, we extend our algorithm to the more realistic re-indexed delay setting, achieving <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>d</mi><mi>T</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> regret and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> cumulative constraint violation. Under strong convexity, these bounds are further improved to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>ln</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msqrt><mo>ln</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>max</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mi>T</mi><mo>]</mo></mrow></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> denotes the maximum delay.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"287 \",\"pages\":\"Article 127871\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425014939\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425014939","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
On the constrained online convex optimization with feedback delay
We investigate the problem of online convex optimization (OCO) under feedback delay, where feedback for a decision is received after a delay, and long-term constraints, where constraints can be violated in intermediate iterations but must be satisfied over the long run. Existing approaches are primarily limited to fixed delay settings and general convex loss functions. In this paper, we employ a stricter metric based on cumulative constraint violations. We first propose a novel algorithm tailored for the fixed -slot delay setting, achieving a regret bound of and a cumulative constraint violation of (), demonstrating superior performance compared to existing results. Moreover, when the loss functions are strongly convex, the regret and violation bounds can be further reduced to () and (), respectively. Additionally, we extend our algorithm to the more realistic re-indexed delay setting, achieving regret and cumulative constraint violation. Under strong convexity, these bounds are further improved to and , where denotes the maximum delay.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.