fdm打印纳米复合材料力学性能LSBoost建模中超参数调谐优化算法的性能对比分析

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mirsadegh Seyedzavvar , Cem Boğa , Behzad Hashemi Soudmand
{"title":"fdm打印纳米复合材料力学性能LSBoost建模中超参数调谐优化算法的性能对比分析","authors":"Mirsadegh Seyedzavvar ,&nbsp;Cem Boğa ,&nbsp;Behzad Hashemi Soudmand","doi":"10.1016/j.eswa.2025.128111","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperparameter tuning is essential for developing accurate machine learning models, yet its role in predicting the mechanical properties of 3D-printed nanocomposites remains underexplored. This study evaluates the performance of three optimization techniques—Bayesian Optimization (BO), Simulated Annealing (SA), and Genetic Algorithm (GA)—in tuning a Least Squares Boosting (LSBoost) model for predicting the mechanical properties of fused deposition modeling (FDM) 3D-printed polylactic acid (PLA)/silica (SiO<sub>2</sub>) nanocomposites. The properties assessed include modulus of elasticity (<span><math><mrow><mi>E</mi></mrow></math></span>), yield strength (<span><math><mrow><msub><mi>S</mi><mi>y</mi></msub></mrow></math></span>), and toughness at ultimate strength (<span><math><mrow><msub><mi>K</mi><mi>u</mi></msub></mrow></math></span>), influenced by key process parameters: extrusion rate (ER), SiO<sub>2</sub> nanoparticle concentration (SC), deposition layer thickness (LT), infill density (ID), and infill geometry (IG). Tensile specimens were produced using a Taguchi L<sub>27</sub> orthogonal array and tested under uniaxial tension. Tuning of the LSBoost model minimized a composite objective function involving root mean square error (RMSE) and (1 − <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span>) loss metrics. Results demonstrated that GA achieved the best performance for yield strength prediction, with an RMSE of 1.9526 MPa and R<sup>2</sup> of 0.9713, while BO yielded the highest <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> (0.9776) for modulus of elasticity prediction with a test RMSE of 130.13 MPa. For toughness, GA produced the lowest test RMSE of 102.86 MPa and the highest R<sup>2</sup> of 0.7953 among the optimization methods. Generally, GA consistently outperformed BO and SA in optimizing the LSBoost model across most mechanical properties, highlighting its effectiveness for hyperparameter tuning in the context of FDM-fabricated nanocomposites.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"287 ","pages":"Article 128111"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative performance analysis of optimization algorithms for hyperparameter tuning in LSBoost modeling of mechanical properties in FDM-printed nanocomposites\",\"authors\":\"Mirsadegh Seyedzavvar ,&nbsp;Cem Boğa ,&nbsp;Behzad Hashemi Soudmand\",\"doi\":\"10.1016/j.eswa.2025.128111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hyperparameter tuning is essential for developing accurate machine learning models, yet its role in predicting the mechanical properties of 3D-printed nanocomposites remains underexplored. This study evaluates the performance of three optimization techniques—Bayesian Optimization (BO), Simulated Annealing (SA), and Genetic Algorithm (GA)—in tuning a Least Squares Boosting (LSBoost) model for predicting the mechanical properties of fused deposition modeling (FDM) 3D-printed polylactic acid (PLA)/silica (SiO<sub>2</sub>) nanocomposites. The properties assessed include modulus of elasticity (<span><math><mrow><mi>E</mi></mrow></math></span>), yield strength (<span><math><mrow><msub><mi>S</mi><mi>y</mi></msub></mrow></math></span>), and toughness at ultimate strength (<span><math><mrow><msub><mi>K</mi><mi>u</mi></msub></mrow></math></span>), influenced by key process parameters: extrusion rate (ER), SiO<sub>2</sub> nanoparticle concentration (SC), deposition layer thickness (LT), infill density (ID), and infill geometry (IG). Tensile specimens were produced using a Taguchi L<sub>27</sub> orthogonal array and tested under uniaxial tension. Tuning of the LSBoost model minimized a composite objective function involving root mean square error (RMSE) and (1 − <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span>) loss metrics. Results demonstrated that GA achieved the best performance for yield strength prediction, with an RMSE of 1.9526 MPa and R<sup>2</sup> of 0.9713, while BO yielded the highest <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> (0.9776) for modulus of elasticity prediction with a test RMSE of 130.13 MPa. For toughness, GA produced the lowest test RMSE of 102.86 MPa and the highest R<sup>2</sup> of 0.7953 among the optimization methods. Generally, GA consistently outperformed BO and SA in optimizing the LSBoost model across most mechanical properties, highlighting its effectiveness for hyperparameter tuning in the context of FDM-fabricated nanocomposites.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"287 \",\"pages\":\"Article 128111\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425017324\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425017324","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

超参数调谐对于开发精确的机器学习模型至关重要,但其在预测3d打印纳米复合材料力学性能方面的作用仍未得到充分探索。本研究评估了三种优化技术——贝叶斯优化(BO)、模拟退火(SA)和遗传算法(GA)——在调整最小二乘增强(LSBoost)模型中的性能,以预测熔融沉积建模(FDM) 3d打印聚乳酸(PLA)/二氧化硅(SiO2)纳米复合材料的力学性能。评估的性能包括弹性模量(E)、屈服强度(Sy)和极限强度韧性(Ku),受关键工艺参数的影响:挤压速率(ER)、SiO2纳米颗粒浓度(SC)、沉积层厚度(LT)、填充密度(ID)和填充几何形状(IG)。采用田口L27正交阵列制作拉伸试样,并进行单轴拉伸试验。LSBoost模型的调优最小化了涉及均方根误差(RMSE)和(1−R2)损失指标的复合目标函数。结果表明,遗传算法对屈服强度预测效果最好,RMSE为1.9526 MPa, R2为0.9713;而BO对弹性模量预测效果最好,R2为0.9776,RMSE为130.13 MPa。对于韧性,GA优化方法的试验RMSE最低,为102.86 MPa, R2最高,为0.7953;总体而言,GA在优化LSBoost模型的大多数力学性能方面始终优于BO和SA,突出了其在fdm制造纳米复合材料的超参数调谐方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative performance analysis of optimization algorithms for hyperparameter tuning in LSBoost modeling of mechanical properties in FDM-printed nanocomposites
Hyperparameter tuning is essential for developing accurate machine learning models, yet its role in predicting the mechanical properties of 3D-printed nanocomposites remains underexplored. This study evaluates the performance of three optimization techniques—Bayesian Optimization (BO), Simulated Annealing (SA), and Genetic Algorithm (GA)—in tuning a Least Squares Boosting (LSBoost) model for predicting the mechanical properties of fused deposition modeling (FDM) 3D-printed polylactic acid (PLA)/silica (SiO2) nanocomposites. The properties assessed include modulus of elasticity (E), yield strength (Sy), and toughness at ultimate strength (Ku), influenced by key process parameters: extrusion rate (ER), SiO2 nanoparticle concentration (SC), deposition layer thickness (LT), infill density (ID), and infill geometry (IG). Tensile specimens were produced using a Taguchi L27 orthogonal array and tested under uniaxial tension. Tuning of the LSBoost model minimized a composite objective function involving root mean square error (RMSE) and (1 − R2) loss metrics. Results demonstrated that GA achieved the best performance for yield strength prediction, with an RMSE of 1.9526 MPa and R2 of 0.9713, while BO yielded the highest R2 (0.9776) for modulus of elasticity prediction with a test RMSE of 130.13 MPa. For toughness, GA produced the lowest test RMSE of 102.86 MPa and the highest R2 of 0.7953 among the optimization methods. Generally, GA consistently outperformed BO and SA in optimizing the LSBoost model across most mechanical properties, highlighting its effectiveness for hyperparameter tuning in the context of FDM-fabricated nanocomposites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信