{"title":"基于元关注图卷积循环网络的交通预测","authors":"Adnan Zeb , Jianying Zheng , Yongchao Ye , Junde Chen , Shiyao Zhang , Xuetao Wei , James Jianqiao Yu","doi":"10.1016/j.eswa.2025.128073","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic forecasting is essential for the development of intelligent transportation systems. However, existing forecasting models often struggle to effectively capture the complex spatial-temporal dependencies inherent in traffic data. Many current approaches are limited in their ability to model node-specific patterns and to simultaneously capture both short- and long-range dependencies. In this paper, we propose a novel traffic forecasting model, the Meta Attentive Graph Convolutional Recurrent Network (MAGCRN), which addresses these limitations through two key modules: (1) Node-Specific Meta Pattern Learning (NMPL) and (2) Node Attention Weight Generation (NAWG). The NMPL module captures the unique characteristics of each node in the traffic network by dynamically generating node-specific convolutional filters. The NAWG module enhances the model’s ability to capture both short- and long-range temporal dependencies by generating attention weights that connect node-specific features with those across the entire temporal dimension. Comprehensive experiments on six real-world traffic datasets demonstrate that MAGCRN consistently outperforms state-of-the-art baselines in both traffic flow and speed prediction tasks. The code is available at <span><span>https://github.com/Aazeb/MAGCRN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"287 ","pages":"Article 128073"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic forecasting with meta attentive graph convolutional recurrent network\",\"authors\":\"Adnan Zeb , Jianying Zheng , Yongchao Ye , Junde Chen , Shiyao Zhang , Xuetao Wei , James Jianqiao Yu\",\"doi\":\"10.1016/j.eswa.2025.128073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic forecasting is essential for the development of intelligent transportation systems. However, existing forecasting models often struggle to effectively capture the complex spatial-temporal dependencies inherent in traffic data. Many current approaches are limited in their ability to model node-specific patterns and to simultaneously capture both short- and long-range dependencies. In this paper, we propose a novel traffic forecasting model, the Meta Attentive Graph Convolutional Recurrent Network (MAGCRN), which addresses these limitations through two key modules: (1) Node-Specific Meta Pattern Learning (NMPL) and (2) Node Attention Weight Generation (NAWG). The NMPL module captures the unique characteristics of each node in the traffic network by dynamically generating node-specific convolutional filters. The NAWG module enhances the model’s ability to capture both short- and long-range temporal dependencies by generating attention weights that connect node-specific features with those across the entire temporal dimension. Comprehensive experiments on six real-world traffic datasets demonstrate that MAGCRN consistently outperforms state-of-the-art baselines in both traffic flow and speed prediction tasks. The code is available at <span><span>https://github.com/Aazeb/MAGCRN</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"287 \",\"pages\":\"Article 128073\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741742501694X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742501694X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Traffic forecasting with meta attentive graph convolutional recurrent network
Traffic forecasting is essential for the development of intelligent transportation systems. However, existing forecasting models often struggle to effectively capture the complex spatial-temporal dependencies inherent in traffic data. Many current approaches are limited in their ability to model node-specific patterns and to simultaneously capture both short- and long-range dependencies. In this paper, we propose a novel traffic forecasting model, the Meta Attentive Graph Convolutional Recurrent Network (MAGCRN), which addresses these limitations through two key modules: (1) Node-Specific Meta Pattern Learning (NMPL) and (2) Node Attention Weight Generation (NAWG). The NMPL module captures the unique characteristics of each node in the traffic network by dynamically generating node-specific convolutional filters. The NAWG module enhances the model’s ability to capture both short- and long-range temporal dependencies by generating attention weights that connect node-specific features with those across the entire temporal dimension. Comprehensive experiments on six real-world traffic datasets demonstrate that MAGCRN consistently outperforms state-of-the-art baselines in both traffic flow and speed prediction tasks. The code is available at https://github.com/Aazeb/MAGCRN.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.