{"title":"多参数副积的marcinkiewicz型乘数定理","authors":"Yaryong Heo , Sunggeum Hong , Chan Woo Yang","doi":"10.1016/j.na.2025.113832","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish Marcinkiewicz-type multiplier theorems for multi-linear and multi-parameter Fourier multiplier operators. For <span><math><mi>n</mi></math></span>-linear and multi-parameter Fourier multiplier operators, Muscalu et al. (2004,2006) obtained <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>×</mo><mo>⋯</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span> estimates for all <span><math><mrow><mn>1</mn><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo><</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>, under the condition that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac></mrow></math></span>. Their approach assumed that the multipliers and their derivatives satisfy specific pointwise estimates (the Mihlin-type condition). In contrast, we will consider multi-linear and multi-parameter operators whose multipliers exhibit limited smoothness, characterized by a function space rather than pointwise conditions (the Marcinkiewicz-type condition). The Marcinkiewicz-type multiplier condition addressed in this paper involves the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-average of the multiplier and its derivatives. This approach allows us to address a wider variety of multipliers compared to the Mihlin-type condition.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113832"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marcinkiewicz-type multiplier theorem for multi-parameter paraproducts\",\"authors\":\"Yaryong Heo , Sunggeum Hong , Chan Woo Yang\",\"doi\":\"10.1016/j.na.2025.113832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish Marcinkiewicz-type multiplier theorems for multi-linear and multi-parameter Fourier multiplier operators. For <span><math><mi>n</mi></math></span>-linear and multi-parameter Fourier multiplier operators, Muscalu et al. (2004,2006) obtained <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>×</mo><mo>⋯</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span> estimates for all <span><math><mrow><mn>1</mn><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo><</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>, under the condition that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac></mrow></math></span>. Their approach assumed that the multipliers and their derivatives satisfy specific pointwise estimates (the Mihlin-type condition). In contrast, we will consider multi-linear and multi-parameter operators whose multipliers exhibit limited smoothness, characterized by a function space rather than pointwise conditions (the Marcinkiewicz-type condition). The Marcinkiewicz-type multiplier condition addressed in this paper involves the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-average of the multiplier and its derivatives. This approach allows us to address a wider variety of multipliers compared to the Mihlin-type condition.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113832\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000860\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000860","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Marcinkiewicz-type multiplier theorem for multi-parameter paraproducts
In this paper, we establish Marcinkiewicz-type multiplier theorems for multi-linear and multi-parameter Fourier multiplier operators. For -linear and multi-parameter Fourier multiplier operators, Muscalu et al. (2004,2006) obtained estimates for all and , under the condition that . Their approach assumed that the multipliers and their derivatives satisfy specific pointwise estimates (the Mihlin-type condition). In contrast, we will consider multi-linear and multi-parameter operators whose multipliers exhibit limited smoothness, characterized by a function space rather than pointwise conditions (the Marcinkiewicz-type condition). The Marcinkiewicz-type multiplier condition addressed in this paper involves the -average of the multiplier and its derivatives. This approach allows us to address a wider variety of multipliers compared to the Mihlin-type condition.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.