多参数副积的marcinkiewicz型乘数定理

IF 1.3 2区 数学 Q1 MATHEMATICS
Yaryong Heo , Sunggeum Hong , Chan Woo Yang
{"title":"多参数副积的marcinkiewicz型乘数定理","authors":"Yaryong Heo ,&nbsp;Sunggeum Hong ,&nbsp;Chan Woo Yang","doi":"10.1016/j.na.2025.113832","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish Marcinkiewicz-type multiplier theorems for multi-linear and multi-parameter Fourier multiplier operators. For <span><math><mi>n</mi></math></span>-linear and multi-parameter Fourier multiplier operators, Muscalu et al. (2004,2006) obtained <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>×</mo><mo>⋯</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span> estimates for all <span><math><mrow><mn>1</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&lt;</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, under the condition that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac></mrow></math></span>. Their approach assumed that the multipliers and their derivatives satisfy specific pointwise estimates (the Mihlin-type condition). In contrast, we will consider multi-linear and multi-parameter operators whose multipliers exhibit limited smoothness, characterized by a function space rather than pointwise conditions (the Marcinkiewicz-type condition). The Marcinkiewicz-type multiplier condition addressed in this paper involves the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-average of the multiplier and its derivatives. This approach allows us to address a wider variety of multipliers compared to the Mihlin-type condition.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113832"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marcinkiewicz-type multiplier theorem for multi-parameter paraproducts\",\"authors\":\"Yaryong Heo ,&nbsp;Sunggeum Hong ,&nbsp;Chan Woo Yang\",\"doi\":\"10.1016/j.na.2025.113832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish Marcinkiewicz-type multiplier theorems for multi-linear and multi-parameter Fourier multiplier operators. For <span><math><mi>n</mi></math></span>-linear and multi-parameter Fourier multiplier operators, Muscalu et al. (2004,2006) obtained <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>×</mo><mo>⋯</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span> estimates for all <span><math><mrow><mn>1</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&lt;</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, under the condition that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac></mrow></math></span>. Their approach assumed that the multipliers and their derivatives satisfy specific pointwise estimates (the Mihlin-type condition). In contrast, we will consider multi-linear and multi-parameter operators whose multipliers exhibit limited smoothness, characterized by a function space rather than pointwise conditions (the Marcinkiewicz-type condition). The Marcinkiewicz-type multiplier condition addressed in this paper involves the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-average of the multiplier and its derivatives. This approach allows us to address a wider variety of multipliers compared to the Mihlin-type condition.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113832\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000860\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000860","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了多线性和多参数傅里叶乘子算子的marcinkiewicz型乘子定理。对于n线性和多参数傅里叶乘子算子,Muscalu等人(2004,2006)在1p=1p1+⋯+1pn的条件下,获得了所有1<;p1,…,pn<;∞和0<;p<;∞的lp1x⋯×Lpn→Lp估计。他们的方法假设乘数及其导数满足特定的点估计(mihlin型条件)。相反,我们将考虑多线性和多参数算子,其乘法器表现出有限的平滑性,其特征是函数空间而不是点向条件(marcinkiewicz型条件)。本文讨论的marcinkiewicz型乘数条件涉及乘数及其导数的l2平均。与mihlin型条件相比,这种方法允许我们处理更多种类的乘数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marcinkiewicz-type multiplier theorem for multi-parameter paraproducts
In this paper, we establish Marcinkiewicz-type multiplier theorems for multi-linear and multi-parameter Fourier multiplier operators. For n-linear and multi-parameter Fourier multiplier operators, Muscalu et al. (2004,2006) obtained Lp1××LpnLp estimates for all 1<p1,,pn< and 0<p<, under the condition that 1p=1p1++1pn. Their approach assumed that the multipliers and their derivatives satisfy specific pointwise estimates (the Mihlin-type condition). In contrast, we will consider multi-linear and multi-parameter operators whose multipliers exhibit limited smoothness, characterized by a function space rather than pointwise conditions (the Marcinkiewicz-type condition). The Marcinkiewicz-type multiplier condition addressed in this paper involves the L2-average of the multiplier and its derivatives. This approach allows us to address a wider variety of multipliers compared to the Mihlin-type condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信