{"title":"部分形状约束标量函数线性回归模型的统计推断","authors":"Kyunghee Han , Yeonjoo Park , Soo-Young Kim","doi":"10.1016/j.csda.2025.108200","DOIUrl":null,"url":null,"abstract":"<div><div>Functional linear regression models are widely used to link functional/longitudinal outcomes with multiple scalar predictors, identifying time-varying covariate effects through regression coefficient functions. Beyond assessing statistical significance, characterizing the shapes of coefficient functions is crucial for drawing interpretable scientific conclusions. Existing studies on shape-constrained analysis primarily focus on global shapes, which require strict prior knowledge of functional relationships across the entire domain. This often leads to misspecified regression models due to a lack of prior information, making them impractical for real-world applications. To address this, a flexible framework is introduced to identify partial shapes in regression coefficient functions. The proposed partial shape-constrained analysis enables researchers to validate functional shapes within a targeted sub-domain, avoiding the misspecification of shape constraints outside the sub-domain of interest. The method also allows for testing different sub-domains for individual covariates and multiple partial shape constraints across composite sub-domains. Our framework supports both kernel- and spline-based estimation approaches, ensuring robust performance with flexibility in computational preference. Finite-sample experiments across various scenarios demonstrate that the proposed framework significantly outperforms the application of global shape constraints to partial domains in both estimation and inference procedures. The inferential tool particularly maintains the type I error rate at the nominal significance level and exhibits increasing power with larger sample sizes, confirming the consistency of the test procedure. The practicality of partial shape-constrained inference is demonstrated through two applications: a clinical trial on NeuroBloc for type A-resistant cervical dystonia and the National Institute of Mental Health Schizophrenia Study.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108200"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for partially shape-constrained function-on-scalar linear regression models\",\"authors\":\"Kyunghee Han , Yeonjoo Park , Soo-Young Kim\",\"doi\":\"10.1016/j.csda.2025.108200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functional linear regression models are widely used to link functional/longitudinal outcomes with multiple scalar predictors, identifying time-varying covariate effects through regression coefficient functions. Beyond assessing statistical significance, characterizing the shapes of coefficient functions is crucial for drawing interpretable scientific conclusions. Existing studies on shape-constrained analysis primarily focus on global shapes, which require strict prior knowledge of functional relationships across the entire domain. This often leads to misspecified regression models due to a lack of prior information, making them impractical for real-world applications. To address this, a flexible framework is introduced to identify partial shapes in regression coefficient functions. The proposed partial shape-constrained analysis enables researchers to validate functional shapes within a targeted sub-domain, avoiding the misspecification of shape constraints outside the sub-domain of interest. The method also allows for testing different sub-domains for individual covariates and multiple partial shape constraints across composite sub-domains. Our framework supports both kernel- and spline-based estimation approaches, ensuring robust performance with flexibility in computational preference. Finite-sample experiments across various scenarios demonstrate that the proposed framework significantly outperforms the application of global shape constraints to partial domains in both estimation and inference procedures. The inferential tool particularly maintains the type I error rate at the nominal significance level and exhibits increasing power with larger sample sizes, confirming the consistency of the test procedure. The practicality of partial shape-constrained inference is demonstrated through two applications: a clinical trial on NeuroBloc for type A-resistant cervical dystonia and the National Institute of Mental Health Schizophrenia Study.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"211 \",\"pages\":\"Article 108200\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325000763\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Statistical inference for partially shape-constrained function-on-scalar linear regression models
Functional linear regression models are widely used to link functional/longitudinal outcomes with multiple scalar predictors, identifying time-varying covariate effects through regression coefficient functions. Beyond assessing statistical significance, characterizing the shapes of coefficient functions is crucial for drawing interpretable scientific conclusions. Existing studies on shape-constrained analysis primarily focus on global shapes, which require strict prior knowledge of functional relationships across the entire domain. This often leads to misspecified regression models due to a lack of prior information, making them impractical for real-world applications. To address this, a flexible framework is introduced to identify partial shapes in regression coefficient functions. The proposed partial shape-constrained analysis enables researchers to validate functional shapes within a targeted sub-domain, avoiding the misspecification of shape constraints outside the sub-domain of interest. The method also allows for testing different sub-domains for individual covariates and multiple partial shape constraints across composite sub-domains. Our framework supports both kernel- and spline-based estimation approaches, ensuring robust performance with flexibility in computational preference. Finite-sample experiments across various scenarios demonstrate that the proposed framework significantly outperforms the application of global shape constraints to partial domains in both estimation and inference procedures. The inferential tool particularly maintains the type I error rate at the nominal significance level and exhibits increasing power with larger sample sizes, confirming the consistency of the test procedure. The practicality of partial shape-constrained inference is demonstrated through two applications: a clinical trial on NeuroBloc for type A-resistant cervical dystonia and the National Institute of Mental Health Schizophrenia Study.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]