维库林及其剪接异构体Metavinculin之间pip2介导的差异关联的分子基础。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mohammad Ashhar I Khan,Venkat R Chirasani,Muzaddid Sarker,Laura McCormick,Sharon L Campbell
{"title":"维库林及其剪接异构体Metavinculin之间pip2介导的差异关联的分子基础。","authors":"Mohammad Ashhar I Khan,Venkat R Chirasani,Muzaddid Sarker,Laura McCormick,Sharon L Campbell","doi":"10.1016/j.jbc.2025.110232","DOIUrl":null,"url":null,"abstract":"Vinculin (Vcn) and its splice variant metavinculin (MVcn) are cell adhesion proteins that regulate cell morphology, adhesion and motility. They function as scaffold proteins that anchor membrane receptors to filamentous actin (F-actin) at focal adhesions (FA) and cell-cell junctions. MVcn bears an extra 68 amino acid insert in the tail domain and is selectively expressed in cardiac and smooth muscle cells at sub-stoichiometric levels relative to Vcn. Mutations in the MVcn tail domain (MVt) promote cardiomyopathy, yet how these mutations alter ligand interactions to promote defects in force transduction and reduced blood flow is unclear. One difference between Vcn and MVcn lies in the ability to reorganize F-actin, with MVcn negatively regulating Vcn-mediated F-actin bundling. Vcn associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through its tail domain (Vt) to drive recruitment, activation and FA turnover. However, it remains unclear whether MVcn specifically associates with PIP2-containing membranes and how such interactions might influence its functional interplay with Vcn in tissues where both isoforms coexist. To evaluate the interaction of MVt and MVt cardiomyopathy mutants with PIP2-membranes in comparison with Vt, we conducted mutagenesis, phospholipid-association assays and computational modeling. We found that MVt shows reduced association for PIP2-containing liposomes relative to Vt due to sequence differences within the insert region. Moreover, mutations in MVt that promote cardiomyopathies do not affect PIP2-dependent lipid association. These findings suggest that MVcn differs from Vcn in driving PIP2-mediated membrane association and sheds light on the coordinate role of Vcn and MVcn in membrane association as well as MVcn cardiomyopathy defects.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"1 1","pages":"110232"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular basis for differential PIP2-mediated association between Vinculin and its splice isoform Metavinculin.\",\"authors\":\"Mohammad Ashhar I Khan,Venkat R Chirasani,Muzaddid Sarker,Laura McCormick,Sharon L Campbell\",\"doi\":\"10.1016/j.jbc.2025.110232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vinculin (Vcn) and its splice variant metavinculin (MVcn) are cell adhesion proteins that regulate cell morphology, adhesion and motility. They function as scaffold proteins that anchor membrane receptors to filamentous actin (F-actin) at focal adhesions (FA) and cell-cell junctions. MVcn bears an extra 68 amino acid insert in the tail domain and is selectively expressed in cardiac and smooth muscle cells at sub-stoichiometric levels relative to Vcn. Mutations in the MVcn tail domain (MVt) promote cardiomyopathy, yet how these mutations alter ligand interactions to promote defects in force transduction and reduced blood flow is unclear. One difference between Vcn and MVcn lies in the ability to reorganize F-actin, with MVcn negatively regulating Vcn-mediated F-actin bundling. Vcn associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through its tail domain (Vt) to drive recruitment, activation and FA turnover. However, it remains unclear whether MVcn specifically associates with PIP2-containing membranes and how such interactions might influence its functional interplay with Vcn in tissues where both isoforms coexist. To evaluate the interaction of MVt and MVt cardiomyopathy mutants with PIP2-membranes in comparison with Vt, we conducted mutagenesis, phospholipid-association assays and computational modeling. We found that MVt shows reduced association for PIP2-containing liposomes relative to Vt due to sequence differences within the insert region. Moreover, mutations in MVt that promote cardiomyopathies do not affect PIP2-dependent lipid association. These findings suggest that MVcn differs from Vcn in driving PIP2-mediated membrane association and sheds light on the coordinate role of Vcn and MVcn in membrane association as well as MVcn cardiomyopathy defects.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"1 1\",\"pages\":\"110232\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110232\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110232","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Vinculin (Vcn)及其剪接变体metavinculin (MVcn)是调节细胞形态、粘附和运动的细胞粘附蛋白。它们作为支架蛋白在局灶黏附(FA)和细胞-细胞连接中将膜受体锚定在丝状肌动蛋白(F-actin)上。与Vcn相比,MVcn在心脏和平滑肌细胞中以亚化学计量水平选择性表达。MVcn尾部结构域(MVt)的突变可促进心肌病,但这些突变如何改变配体相互作用以促进力转导缺陷和血流量减少尚不清楚。Vcn和MVcn的一个区别在于重组f -肌动蛋白的能力,MVcn负向调节Vcn介导的f -肌动蛋白捆绑。Vcn通过其尾部结构域(Vt)与磷脂酰肌醇4,5-二磷酸(PIP2)结合,驱动招募、激活和FA周转。然而,目前尚不清楚MVcn是否与含pip2的膜特异性结合,以及这种相互作用如何影响两种异构体共存的组织中MVcn与Vcn的功能相互作用。为了评估MVt和MVt心肌病突变体与pip2膜的相互作用,并与Vt进行比较,我们进行了诱变、磷脂关联分析和计算建模。我们发现,由于插入区域内的序列差异,MVt相对于Vt显示出含有pip2的脂质体的关联降低。此外,促进心肌病的MVt突变不影响pip2依赖性脂质关联。这些发现提示MVcn与Vcn在驱动pip2介导的膜关联方面存在差异,并揭示了Vcn和MVcn在膜关联以及MVcn心肌病缺陷中的协调作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular basis for differential PIP2-mediated association between Vinculin and its splice isoform Metavinculin.
Vinculin (Vcn) and its splice variant metavinculin (MVcn) are cell adhesion proteins that regulate cell morphology, adhesion and motility. They function as scaffold proteins that anchor membrane receptors to filamentous actin (F-actin) at focal adhesions (FA) and cell-cell junctions. MVcn bears an extra 68 amino acid insert in the tail domain and is selectively expressed in cardiac and smooth muscle cells at sub-stoichiometric levels relative to Vcn. Mutations in the MVcn tail domain (MVt) promote cardiomyopathy, yet how these mutations alter ligand interactions to promote defects in force transduction and reduced blood flow is unclear. One difference between Vcn and MVcn lies in the ability to reorganize F-actin, with MVcn negatively regulating Vcn-mediated F-actin bundling. Vcn associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through its tail domain (Vt) to drive recruitment, activation and FA turnover. However, it remains unclear whether MVcn specifically associates with PIP2-containing membranes and how such interactions might influence its functional interplay with Vcn in tissues where both isoforms coexist. To evaluate the interaction of MVt and MVt cardiomyopathy mutants with PIP2-membranes in comparison with Vt, we conducted mutagenesis, phospholipid-association assays and computational modeling. We found that MVt shows reduced association for PIP2-containing liposomes relative to Vt due to sequence differences within the insert region. Moreover, mutations in MVt that promote cardiomyopathies do not affect PIP2-dependent lipid association. These findings suggest that MVcn differs from Vcn in driving PIP2-mediated membrane association and sheds light on the coordinate role of Vcn and MVcn in membrane association as well as MVcn cardiomyopathy defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信