SOMMD:一个用自组织图分析分子动力学模拟的R包。

Stefano Motta, Lara Callea, Shaziya Ismail Mulla, Hamid Davoudkhani, Laura Bonati, Alessandro Pandini
{"title":"SOMMD:一个用自组织图分析分子动力学模拟的R包。","authors":"Stefano Motta, Lara Callea, Shaziya Ismail Mulla, Hamid Davoudkhani, Laura Bonati, Alessandro Pandini","doi":"10.1093/bioinformatics/btaf308","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Molecular Dynamics (MD) simulations provide critical insights into biomolecular processes but they generate complex high-dimensional data that are often difficult to interpret directly. Dimensionality reduction methods like Principal Component Analysis (PCA), Time-Lagged Independent Component Analysis (TICA) and Self-Organising Maps (SOMs) have helped in extracting essential information on functional dynamics. However, there is a growing need for a user-friendly and flexible framework for SOM-based analyses of MD simulations. Such a framework should offer adaptable workflows, customizable options, and direct integration with a widely adopted analysis software.</p><p><strong>Results: </strong>We designed and developed SOMMD, an R package to streamline MD analysis workflows. SOMMD facilitates the interpretation of atomistic trajectories through SOMs, providing tools for each stage of the workflow, from importing a wide range of MD trajectories data types to generating enhanced visualizations. The package also includes three example projects that demonstrate how SOM can be applied in real-world scenarios, including cluster analysis, pathways mapping and transition networks reconstruction.</p><p><strong>Availability: </strong>SOMMD is available on CRAN (https://CRAN.R-project.org/package=SOMMD) and on GitHub (https://github.com/alepandini/SOMMD).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOMMD: An R Package for the Analysis of Molecular Dynamics Simulations using Self-Organising Map.\",\"authors\":\"Stefano Motta, Lara Callea, Shaziya Ismail Mulla, Hamid Davoudkhani, Laura Bonati, Alessandro Pandini\",\"doi\":\"10.1093/bioinformatics/btaf308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Molecular Dynamics (MD) simulations provide critical insights into biomolecular processes but they generate complex high-dimensional data that are often difficult to interpret directly. Dimensionality reduction methods like Principal Component Analysis (PCA), Time-Lagged Independent Component Analysis (TICA) and Self-Organising Maps (SOMs) have helped in extracting essential information on functional dynamics. However, there is a growing need for a user-friendly and flexible framework for SOM-based analyses of MD simulations. Such a framework should offer adaptable workflows, customizable options, and direct integration with a widely adopted analysis software.</p><p><strong>Results: </strong>We designed and developed SOMMD, an R package to streamline MD analysis workflows. SOMMD facilitates the interpretation of atomistic trajectories through SOMs, providing tools for each stage of the workflow, from importing a wide range of MD trajectories data types to generating enhanced visualizations. The package also includes three example projects that demonstrate how SOM can be applied in real-world scenarios, including cluster analysis, pathways mapping and transition networks reconstruction.</p><p><strong>Availability: </strong>SOMMD is available on CRAN (https://CRAN.R-project.org/package=SOMMD) and on GitHub (https://github.com/alepandini/SOMMD).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:分子动力学(MD)模拟提供了对生物分子过程的关键见解,但它们产生复杂的高维数据,通常难以直接解释。主成分分析(PCA)、时滞独立成分分析(TICA)和自组织图(SOMs)等降维方法有助于提取功能动力学的基本信息。然而,对于基于som的MD模拟分析,越来越需要一个用户友好且灵活的框架。这样的框架应该提供可适应的工作流、可定制的选项,以及与广泛采用的分析软件的直接集成。结果:我们设计并开发了SOMMD,一个简化MD分析工作流程的R包。SOMMD通过SOMs促进了原子轨迹的解释,为工作流程的每个阶段提供了工具,从导入广泛的MD轨迹数据类型到生成增强的可视化。该软件包还包括三个示例项目,展示了SOM如何在现实场景中应用,包括聚类分析、路径映射和过渡网络重建。可用性:SOMMD可在CRAN (https://CRAN.R-project.org/package=SOMMD)和GitHub (https://github.com/alepandini/SOMMD).Supplementary)上获得。信息:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOMMD: An R Package for the Analysis of Molecular Dynamics Simulations using Self-Organising Map.

Motivation: Molecular Dynamics (MD) simulations provide critical insights into biomolecular processes but they generate complex high-dimensional data that are often difficult to interpret directly. Dimensionality reduction methods like Principal Component Analysis (PCA), Time-Lagged Independent Component Analysis (TICA) and Self-Organising Maps (SOMs) have helped in extracting essential information on functional dynamics. However, there is a growing need for a user-friendly and flexible framework for SOM-based analyses of MD simulations. Such a framework should offer adaptable workflows, customizable options, and direct integration with a widely adopted analysis software.

Results: We designed and developed SOMMD, an R package to streamline MD analysis workflows. SOMMD facilitates the interpretation of atomistic trajectories through SOMs, providing tools for each stage of the workflow, from importing a wide range of MD trajectories data types to generating enhanced visualizations. The package also includes three example projects that demonstrate how SOM can be applied in real-world scenarios, including cluster analysis, pathways mapping and transition networks reconstruction.

Availability: SOMMD is available on CRAN (https://CRAN.R-project.org/package=SOMMD) and on GitHub (https://github.com/alepandini/SOMMD).

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信