{"title":"使用FracMinHash估计相似度和距离。","authors":"Mahmudur Rahman Hera, David Koslicki","doi":"10.1186/s13015-025-00276-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The increasing number and volume of genomic and metagenomic data necessitates scalable and robust computational models for precise analysis. Sketching techniques utilizing <math><mi>k</mi></math> -mers from a biological sample have proven to be useful for large-scale analyses. In recent years, FracMinHash has emerged as a popular sketching technique and has been used in several useful applications. Recent studies on FracMinHash proved unbiased estimators for the containment and Jaccard indices. However, theoretical investigations for other metrics are still lacking.</p><p><strong>Theoretical contributions: </strong>In this paper, we present a theoretical framework for estimating similarity/distance metrics by using FracMinHash sketches, when the metric is expressible in a certain form. We establish conditions under which such an estimation is sound and recommend a minimum scale factor s for accurate results. Experimental evidence supports our theoretical findings.</p><p><strong>Practical contributions: </strong>We also present frac-kmc, a fast and efficient FracMinHash sketch generator program. frac-kmc is the fastest known FracMinHash sketch generator, delivering accurate and precise results for cosine similarity estimation on real data. frac-kmc is also the first parallel tool for this task, allowing for speeding up sketch generation using multiple CPU cores - an option lacking in existing serialized tools. We show that by computing FracMinHash sketches using frac-kmc, we can estimate pairwise similarity speedily and accurately on real data. frac-kmc is freely available here: https://github.com/KoslickiLab/frac-kmc/.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"8"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082993/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating similarity and distance using FracMinHash.\",\"authors\":\"Mahmudur Rahman Hera, David Koslicki\",\"doi\":\"10.1186/s13015-025-00276-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The increasing number and volume of genomic and metagenomic data necessitates scalable and robust computational models for precise analysis. Sketching techniques utilizing <math><mi>k</mi></math> -mers from a biological sample have proven to be useful for large-scale analyses. In recent years, FracMinHash has emerged as a popular sketching technique and has been used in several useful applications. Recent studies on FracMinHash proved unbiased estimators for the containment and Jaccard indices. However, theoretical investigations for other metrics are still lacking.</p><p><strong>Theoretical contributions: </strong>In this paper, we present a theoretical framework for estimating similarity/distance metrics by using FracMinHash sketches, when the metric is expressible in a certain form. We establish conditions under which such an estimation is sound and recommend a minimum scale factor s for accurate results. Experimental evidence supports our theoretical findings.</p><p><strong>Practical contributions: </strong>We also present frac-kmc, a fast and efficient FracMinHash sketch generator program. frac-kmc is the fastest known FracMinHash sketch generator, delivering accurate and precise results for cosine similarity estimation on real data. frac-kmc is also the first parallel tool for this task, allowing for speeding up sketch generation using multiple CPU cores - an option lacking in existing serialized tools. We show that by computing FracMinHash sketches using frac-kmc, we can estimate pairwise similarity speedily and accurately on real data. frac-kmc is freely available here: https://github.com/KoslickiLab/frac-kmc/.</p>\",\"PeriodicalId\":50823,\"journal\":{\"name\":\"Algorithms for Molecular Biology\",\"volume\":\"20 1\",\"pages\":\"8\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082993/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms for Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-025-00276-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-025-00276-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Estimating similarity and distance using FracMinHash.
Motivation: The increasing number and volume of genomic and metagenomic data necessitates scalable and robust computational models for precise analysis. Sketching techniques utilizing -mers from a biological sample have proven to be useful for large-scale analyses. In recent years, FracMinHash has emerged as a popular sketching technique and has been used in several useful applications. Recent studies on FracMinHash proved unbiased estimators for the containment and Jaccard indices. However, theoretical investigations for other metrics are still lacking.
Theoretical contributions: In this paper, we present a theoretical framework for estimating similarity/distance metrics by using FracMinHash sketches, when the metric is expressible in a certain form. We establish conditions under which such an estimation is sound and recommend a minimum scale factor s for accurate results. Experimental evidence supports our theoretical findings.
Practical contributions: We also present frac-kmc, a fast and efficient FracMinHash sketch generator program. frac-kmc is the fastest known FracMinHash sketch generator, delivering accurate and precise results for cosine similarity estimation on real data. frac-kmc is also the first parallel tool for this task, allowing for speeding up sketch generation using multiple CPU cores - an option lacking in existing serialized tools. We show that by computing FracMinHash sketches using frac-kmc, we can estimate pairwise similarity speedily and accurately on real data. frac-kmc is freely available here: https://github.com/KoslickiLab/frac-kmc/.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.