{"title":"发育毒性:人工智能驱动的评估。","authors":"Tong Wang, Xuelian Jia, Lauren M Aleksunes, Hui Shen, Hong-Wen Deng, Hao Zhu","doi":"10.1016/j.tips.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory agencies require comprehensive toxicity testing for prenatal drug exposure, including new drugs in development, to reduce concerns about developmental toxicity, that is, drug-induced toxicity and adverse effects in pregnant women and fetuses. However, defining developmental toxicity endpoints and optimal analysis of associated public big data remain challenging. Recently, artificial intelligence (AI) approaches have had a critical role in analyzing complex, high-dimensional data, uncovering subtle relationships between chemical exposures and associated developmental risks. Here, we present an overview of major big data resources and data-driven models that focus on predicting various toxicity endpoints. We also highlight emerging, interpretable AI models that integrate multimodal data and domain knowledge to reveal toxic mechanisms underlying complex endpoints, and outline a potential framework that leverages multiple interpretable models to comprehensively evaluate chemical-induced developmental toxicity.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developmental toxicity: artificial intelligence-powered assessments.\",\"authors\":\"Tong Wang, Xuelian Jia, Lauren M Aleksunes, Hui Shen, Hong-Wen Deng, Hao Zhu\",\"doi\":\"10.1016/j.tips.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulatory agencies require comprehensive toxicity testing for prenatal drug exposure, including new drugs in development, to reduce concerns about developmental toxicity, that is, drug-induced toxicity and adverse effects in pregnant women and fetuses. However, defining developmental toxicity endpoints and optimal analysis of associated public big data remain challenging. Recently, artificial intelligence (AI) approaches have had a critical role in analyzing complex, high-dimensional data, uncovering subtle relationships between chemical exposures and associated developmental risks. Here, we present an overview of major big data resources and data-driven models that focus on predicting various toxicity endpoints. We also highlight emerging, interpretable AI models that integrate multimodal data and domain knowledge to reveal toxic mechanisms underlying complex endpoints, and outline a potential framework that leverages multiple interpretable models to comprehensively evaluate chemical-induced developmental toxicity.</p>\",\"PeriodicalId\":23250,\"journal\":{\"name\":\"Trends in pharmacological sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tips.2025.04.005\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2025.04.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Regulatory agencies require comprehensive toxicity testing for prenatal drug exposure, including new drugs in development, to reduce concerns about developmental toxicity, that is, drug-induced toxicity and adverse effects in pregnant women and fetuses. However, defining developmental toxicity endpoints and optimal analysis of associated public big data remain challenging. Recently, artificial intelligence (AI) approaches have had a critical role in analyzing complex, high-dimensional data, uncovering subtle relationships between chemical exposures and associated developmental risks. Here, we present an overview of major big data resources and data-driven models that focus on predicting various toxicity endpoints. We also highlight emerging, interpretable AI models that integrate multimodal data and domain knowledge to reveal toxic mechanisms underlying complex endpoints, and outline a potential framework that leverages multiple interpretable models to comprehensively evaluate chemical-induced developmental toxicity.
期刊介绍:
Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research.
The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics.
Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles.
Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.