{"title":"稳健回归中异常值比例的自举估计。","authors":"Qiang Heng, Kenneth Lange","doi":"10.1007/s11222-024-10526-1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a nonparametric bootstrap method for estimating the proportions of inliers and outliers in robust regression models. Our approach is based on the concept of stability, providing robustness against distributional assumptions and eliminating the need for pre-specified confidence levels. Through numerical experiments, we demonstrate that this method yields more accurate and stable estimates than existing alternatives. Additionally, the generated instability paths offer a valuable graphical tool for understanding the inlier and outlier distributions within the data. The method naturally extends to generalized linear models, where we find that variance-stabilizing transformations produce residuals that are well-suited for outlier detection. Applications to two real-world datasets further illustrate the practical utility of our approach in identifying outliers.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bootstrap estimation of the proportion of outliers in robust regression.\",\"authors\":\"Qiang Heng, Kenneth Lange\",\"doi\":\"10.1007/s11222-024-10526-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a nonparametric bootstrap method for estimating the proportions of inliers and outliers in robust regression models. Our approach is based on the concept of stability, providing robustness against distributional assumptions and eliminating the need for pre-specified confidence levels. Through numerical experiments, we demonstrate that this method yields more accurate and stable estimates than existing alternatives. Additionally, the generated instability paths offer a valuable graphical tool for understanding the inlier and outlier distributions within the data. The method naturally extends to generalized linear models, where we find that variance-stabilizing transformations produce residuals that are well-suited for outlier detection. Applications to two real-world datasets further illustrate the practical utility of our approach in identifying outliers.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10526-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10526-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Bootstrap estimation of the proportion of outliers in robust regression.
This paper presents a nonparametric bootstrap method for estimating the proportions of inliers and outliers in robust regression models. Our approach is based on the concept of stability, providing robustness against distributional assumptions and eliminating the need for pre-specified confidence levels. Through numerical experiments, we demonstrate that this method yields more accurate and stable estimates than existing alternatives. Additionally, the generated instability paths offer a valuable graphical tool for understanding the inlier and outlier distributions within the data. The method naturally extends to generalized linear models, where we find that variance-stabilizing transformations produce residuals that are well-suited for outlier detection. Applications to two real-world datasets further illustrate the practical utility of our approach in identifying outliers.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.