{"title":"在肺腺癌中,德林-3调控内质网应激和浆细胞IgG4分泌。","authors":"Lanlan Lin, Luyang Chen, Guofu Lin, Xiaohui Chen, Linlin Huang, Jiansheng Yang, Shaohua Chen, Ronghang Lin, Dongyong Yang, Fei He, Danwen Qian, Yiming Zeng, Yuan Xu","doi":"10.1038/s41388-025-03435-8","DOIUrl":null,"url":null,"abstract":"<p><p>Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma.\",\"authors\":\"Lanlan Lin, Luyang Chen, Guofu Lin, Xiaohui Chen, Linlin Huang, Jiansheng Yang, Shaohua Chen, Ronghang Lin, Dongyong Yang, Fei He, Danwen Qian, Yiming Zeng, Yuan Xu\",\"doi\":\"10.1038/s41388-025-03435-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-025-03435-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03435-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma.
Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.