在肺腺癌中,德林-3调控内质网应激和浆细胞IgG4分泌。

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lanlan Lin, Luyang Chen, Guofu Lin, Xiaohui Chen, Linlin Huang, Jiansheng Yang, Shaohua Chen, Ronghang Lin, Dongyong Yang, Fei He, Danwen Qian, Yiming Zeng, Yuan Xu
{"title":"在肺腺癌中,德林-3调控内质网应激和浆细胞IgG4分泌。","authors":"Lanlan Lin, Luyang Chen, Guofu Lin, Xiaohui Chen, Linlin Huang, Jiansheng Yang, Shaohua Chen, Ronghang Lin, Dongyong Yang, Fei He, Danwen Qian, Yiming Zeng, Yuan Xu","doi":"10.1038/s41388-025-03435-8","DOIUrl":null,"url":null,"abstract":"<p><p>Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma.\",\"authors\":\"Lanlan Lin, Luyang Chen, Guofu Lin, Xiaohui Chen, Linlin Huang, Jiansheng Yang, Shaohua Chen, Ronghang Lin, Dongyong Yang, Fei He, Danwen Qian, Yiming Zeng, Yuan Xu\",\"doi\":\"10.1038/s41388-025-03435-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-025-03435-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03435-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在内质网(ER)应激诱导的错误折叠的腔内糖蛋白降解过程中,Derlin-3被认为是一个重要的因素。然而,其在肺腺癌(LUAD)肿瘤微环境(TME)中的潜在生物机制仍有待阐明。在本研究中,我们发现Derlin-3在LUAD组织中明显升高,可以预测LUAD患者预后较差。ScRNA-seq分析表明,Derlin-3主要富集于TME的B淋巴细胞中,尤其是浆细胞中。此外,Derlin-3可能通过Hrd1/p38/PRDM1通路参与浆细胞内质网应激和IgG4分泌。而异常的IgG4产生可能是巨噬细胞向M2表型极化的重要驱动因素。此外,下调Derlin-3在体内可抑制浆细胞浸润和M2巨噬细胞极化。我们的研究结果表明,Derlin-3可以通过内质网应激来塑造TME,从而控制免疫功能,这可能是LUAD中一个有希望的免疫治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma.

Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信