通过先进的虚拟筛选方法鉴定人类诺如病毒感染的潜在3CLpro抑制剂-调节剂。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shovonlal Bhowmick, Tapan Kumar Mistri, Mohammad K Okla, Ibrahim A Saleh, Achintya Saha, Pritee Chunarkar Patil
{"title":"通过先进的虚拟筛选方法鉴定人类诺如病毒感染的潜在3CLpro抑制剂-调节剂。","authors":"Shovonlal Bhowmick, Tapan Kumar Mistri, Mohammad K Okla, Ibrahim A Saleh, Achintya Saha, Pritee Chunarkar Patil","doi":"10.1080/07391102.2025.2502672","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to screen small molecular compounds such as human noroviruses (HuNoV) inhibitors/modulators that could potentially be responsible for exhibiting some magnitude of inhibitory/modulatory activity against HuNoV 3CLPro. The structural similarity-based screening against the ChEMBL database is performed against known chemical entities that are presently under pre-clinical trial. After the similarity search, remaining molecules were considered for molecular docking using SCORCH and PLANTS. On detailed analyses and comparisons with the control molecule, three hits (CHEMBL393820, CHEMBL2028556, and CHEMBL3747799) were found to have the potential for HuNoV 3CLpro inhibition/modulation. The binding interaction analysis revealed several critical amino acids responsible to hold the molecules tightly at the close proximity site of the catalytic residues of HuNoV 3CLpro. Further, MD simulation study was performed in triplicate to understand the binding stability and potentiality of the proposed molecule toward HuNov 3CLpro. The binding free energy based on MM-GBSA has revealed their strong interaction affinity with 3CLpro.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-17"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential 3CLpro inhibitors-modulators for human norovirus infections through an advanced virtual screening approach.\",\"authors\":\"Shovonlal Bhowmick, Tapan Kumar Mistri, Mohammad K Okla, Ibrahim A Saleh, Achintya Saha, Pritee Chunarkar Patil\",\"doi\":\"10.1080/07391102.2025.2502672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aimed to screen small molecular compounds such as human noroviruses (HuNoV) inhibitors/modulators that could potentially be responsible for exhibiting some magnitude of inhibitory/modulatory activity against HuNoV 3CLPro. The structural similarity-based screening against the ChEMBL database is performed against known chemical entities that are presently under pre-clinical trial. After the similarity search, remaining molecules were considered for molecular docking using SCORCH and PLANTS. On detailed analyses and comparisons with the control molecule, three hits (CHEMBL393820, CHEMBL2028556, and CHEMBL3747799) were found to have the potential for HuNoV 3CLpro inhibition/modulation. The binding interaction analysis revealed several critical amino acids responsible to hold the molecules tightly at the close proximity site of the catalytic residues of HuNoV 3CLpro. Further, MD simulation study was performed in triplicate to understand the binding stability and potentiality of the proposed molecule toward HuNov 3CLpro. The binding free energy based on MM-GBSA has revealed their strong interaction affinity with 3CLpro.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2502672\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2502672","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在筛选小分子化合物,如人诺如病毒(HuNoV)抑制剂/调节剂,可能对HuNoV 3CLPro表现出一定程度的抑制/调节活性。针对ChEMBL数据库的结构相似性筛选是针对目前正在进行临床前试验的已知化学实体进行的。相似性搜索完成后,利用SCORCH和PLANTS对剩余分子进行分子对接。通过与对照分子的详细分析和比较,发现三个hit (CHEMBL393820、CHEMBL2028556和CHEMBL3747799)具有抑制/调节HuNoV 3CLpro的潜力。结合相互作用分析显示,在HuNoV 3CLpro的催化残基附近,有几个关键氨基酸负责将分子紧密地保持在一起。此外,MD模拟研究进行了三次,以了解所提出的分子对HuNov 3CLpro的结合稳定性和潜力。基于MM-GBSA的结合自由能表明它们与3CLpro具有很强的相互作用亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of potential 3CLpro inhibitors-modulators for human norovirus infections through an advanced virtual screening approach.

The present study aimed to screen small molecular compounds such as human noroviruses (HuNoV) inhibitors/modulators that could potentially be responsible for exhibiting some magnitude of inhibitory/modulatory activity against HuNoV 3CLPro. The structural similarity-based screening against the ChEMBL database is performed against known chemical entities that are presently under pre-clinical trial. After the similarity search, remaining molecules were considered for molecular docking using SCORCH and PLANTS. On detailed analyses and comparisons with the control molecule, three hits (CHEMBL393820, CHEMBL2028556, and CHEMBL3747799) were found to have the potential for HuNoV 3CLpro inhibition/modulation. The binding interaction analysis revealed several critical amino acids responsible to hold the molecules tightly at the close proximity site of the catalytic residues of HuNoV 3CLpro. Further, MD simulation study was performed in triplicate to understand the binding stability and potentiality of the proposed molecule toward HuNov 3CLpro. The binding free energy based on MM-GBSA has revealed their strong interaction affinity with 3CLpro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信