{"title":"来自坏死软骨下骨的IL-1β诱导的钙化软骨区重塑引发糖皮质激素诱导的股骨头骨坏死患者软骨退行性变","authors":"Pengbo Wang, Limei Shen, Ruitong Yang, Xu Wang, Xiangyu Wang, Yingkang Zhu, Ruiyu Liu","doi":"10.1007/s10753-025-02315-3","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoids-induced osteonecrosis of the femoral head (GONFH) is characterized by progressive cartilage degeneration, yet the role of calcified cartilage zone (CCZ) remodeling in this process remains poorly understood. This study investigated how the inflammatory microenvironment within necrotic subchondral bone drove CCZ remodeling and subsequent cartilage degeneration. Using osteochondral tissues from GONFH patients and interleukin-1β (IL-1β)-treated hypertrophic chondrocytes induced by ATDC5 cells, we combined histology, immunohistochemistry, scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, nanoindentation testing, enzyme linked immunosorbent assay and fluorescent tracking to evaluate morphological, biomechanical, and molecular changes. Our findings revealed that CCZ of GONFH exhibited significant thinning, matrix decomposition, demineralization, diminished mechanical strength, and increased porosity. Spatial analysis demonstrated a strong correlation between CCZ remodeling and site-specific cartilage degeneration. Notably, IL-1β was overexpressed in necrotic subchondral bone and the site deep zones of cartilage. It potently enhanced catabolic activity in hypertrophic chondrocytes, promoting matrix metalloproteinase expression while impairing mineralization capacity. This study uncovers a novel pathological cascade in GONFH: necrotic subchondral bone-derived IL-1β drives CCZ remodeling via biomechanical and biological pathways, leading to cartilage degeneration independent of femoral head collapse. Our findings highlight IL-1β as a critical therapeutic target, providing a rationale for subchondral bone-targeted anti-inflammatory strategies to mitigate GONFH progression.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcified Cartilage Zone Remodeling Induced by IL-1β Derived from Necrotic Subchondral Bone Initiates Cartilage Degeneration in Patients with Glucocorticoids-induced Osteonecrosis of the Femoral Head.\",\"authors\":\"Pengbo Wang, Limei Shen, Ruitong Yang, Xu Wang, Xiangyu Wang, Yingkang Zhu, Ruiyu Liu\",\"doi\":\"10.1007/s10753-025-02315-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucocorticoids-induced osteonecrosis of the femoral head (GONFH) is characterized by progressive cartilage degeneration, yet the role of calcified cartilage zone (CCZ) remodeling in this process remains poorly understood. This study investigated how the inflammatory microenvironment within necrotic subchondral bone drove CCZ remodeling and subsequent cartilage degeneration. Using osteochondral tissues from GONFH patients and interleukin-1β (IL-1β)-treated hypertrophic chondrocytes induced by ATDC5 cells, we combined histology, immunohistochemistry, scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, nanoindentation testing, enzyme linked immunosorbent assay and fluorescent tracking to evaluate morphological, biomechanical, and molecular changes. Our findings revealed that CCZ of GONFH exhibited significant thinning, matrix decomposition, demineralization, diminished mechanical strength, and increased porosity. Spatial analysis demonstrated a strong correlation between CCZ remodeling and site-specific cartilage degeneration. Notably, IL-1β was overexpressed in necrotic subchondral bone and the site deep zones of cartilage. It potently enhanced catabolic activity in hypertrophic chondrocytes, promoting matrix metalloproteinase expression while impairing mineralization capacity. This study uncovers a novel pathological cascade in GONFH: necrotic subchondral bone-derived IL-1β drives CCZ remodeling via biomechanical and biological pathways, leading to cartilage degeneration independent of femoral head collapse. Our findings highlight IL-1β as a critical therapeutic target, providing a rationale for subchondral bone-targeted anti-inflammatory strategies to mitigate GONFH progression.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-025-02315-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02315-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Calcified Cartilage Zone Remodeling Induced by IL-1β Derived from Necrotic Subchondral Bone Initiates Cartilage Degeneration in Patients with Glucocorticoids-induced Osteonecrosis of the Femoral Head.
Glucocorticoids-induced osteonecrosis of the femoral head (GONFH) is characterized by progressive cartilage degeneration, yet the role of calcified cartilage zone (CCZ) remodeling in this process remains poorly understood. This study investigated how the inflammatory microenvironment within necrotic subchondral bone drove CCZ remodeling and subsequent cartilage degeneration. Using osteochondral tissues from GONFH patients and interleukin-1β (IL-1β)-treated hypertrophic chondrocytes induced by ATDC5 cells, we combined histology, immunohistochemistry, scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, nanoindentation testing, enzyme linked immunosorbent assay and fluorescent tracking to evaluate morphological, biomechanical, and molecular changes. Our findings revealed that CCZ of GONFH exhibited significant thinning, matrix decomposition, demineralization, diminished mechanical strength, and increased porosity. Spatial analysis demonstrated a strong correlation between CCZ remodeling and site-specific cartilage degeneration. Notably, IL-1β was overexpressed in necrotic subchondral bone and the site deep zones of cartilage. It potently enhanced catabolic activity in hypertrophic chondrocytes, promoting matrix metalloproteinase expression while impairing mineralization capacity. This study uncovers a novel pathological cascade in GONFH: necrotic subchondral bone-derived IL-1β drives CCZ remodeling via biomechanical and biological pathways, leading to cartilage degeneration independent of femoral head collapse. Our findings highlight IL-1β as a critical therapeutic target, providing a rationale for subchondral bone-targeted anti-inflammatory strategies to mitigate GONFH progression.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.