使用新颖的多组学成像集成工具集对来自连续切片的多组学数据进行空间集成。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Maximilian Wess, Maria K Andersen, Elise Midtbust, Juan Carlos Cabellos Guillem, Trond Viset, Øystein Størkersen, Sebastian Krossa, Morten Beck Rye, May-Britt Tessem
{"title":"使用新颖的多组学成像集成工具集对来自连续切片的多组学数据进行空间集成。","authors":"Maximilian Wess, Maria K Andersen, Elise Midtbust, Juan Carlos Cabellos Guillem, Trond Viset, Øystein Størkersen, Sebastian Krossa, Morten Beck Rye, May-Britt Tessem","doi":"10.1093/gigascience/giaf035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Truly understanding the cancer biology of heterogeneous tumors in precision medicine requires capturing the complexities of multiple omics levels and the spatial heterogeneity of cancer tissue. Techniques like mass spectrometry imaging (MSI) and spatial transcriptomics (ST) achieve this by spatially detecting metabolites and RNA but are often applied to serial sections. To fully leverage the advantage of such multi-omics data, the individual measurements need to be integrated into 1 dataset.</p><p><strong>Results: </strong>We present the Multi-Omics Imaging Integration Toolset (MIIT), a Python framework for integrating spatially resolved multi-omics data. A key component of MIIT's integration is the registration of serial sections for which we developed a nonrigid registration algorithm, GreedyFHist. We validated GreedyFHist on 244 images from fresh-frozen serial sections, achieving state-of-the-art performance. As a proof of concept, we used MIIT to integrate ST and MSI data from prostate tissue samples and assessed the correlation of a gene signature for citrate-spermine secretion derived from ST with metabolic measurements from MSI.</p><p><strong>Conclusion: </strong>MIIT is a highly accurate, customizable, open-source framework for integrating spatial omics technologies performed on different serial sections.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial integration of multi-omics data from serial sections using the novel Multi-Omics Imaging Integration Toolset.\",\"authors\":\"Maximilian Wess, Maria K Andersen, Elise Midtbust, Juan Carlos Cabellos Guillem, Trond Viset, Øystein Størkersen, Sebastian Krossa, Morten Beck Rye, May-Britt Tessem\",\"doi\":\"10.1093/gigascience/giaf035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Truly understanding the cancer biology of heterogeneous tumors in precision medicine requires capturing the complexities of multiple omics levels and the spatial heterogeneity of cancer tissue. Techniques like mass spectrometry imaging (MSI) and spatial transcriptomics (ST) achieve this by spatially detecting metabolites and RNA but are often applied to serial sections. To fully leverage the advantage of such multi-omics data, the individual measurements need to be integrated into 1 dataset.</p><p><strong>Results: </strong>We present the Multi-Omics Imaging Integration Toolset (MIIT), a Python framework for integrating spatially resolved multi-omics data. A key component of MIIT's integration is the registration of serial sections for which we developed a nonrigid registration algorithm, GreedyFHist. We validated GreedyFHist on 244 images from fresh-frozen serial sections, achieving state-of-the-art performance. As a proof of concept, we used MIIT to integrate ST and MSI data from prostate tissue samples and assessed the correlation of a gene signature for citrate-spermine secretion derived from ST with metabolic measurements from MSI.</p><p><strong>Conclusion: </strong>MIIT is a highly accurate, customizable, open-source framework for integrating spatial omics technologies performed on different serial sections.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf035\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在精准医学中,真正理解异质性肿瘤的肿瘤生物学,需要捕捉到多组学水平的复杂性和肿瘤组织的空间异质性。质谱成像(MSI)和空间转录组学(ST)等技术通过空间检测代谢物和RNA来实现这一点,但通常应用于序列切片。为了充分利用这种多组学数据的优势,需要将单个测量值集成到一个数据集中。结果:我们提出了多组学成像集成工具集(MIIT),这是一个用于集成空间分辨多组学数据的Python框架。工信部集成的一个关键组成部分是串行部分的配准,为此我们开发了一种非刚性配准算法GreedyFHist。我们在244张来自新鲜冷冻连续切片的图像上验证了GreedyFHist,达到了最先进的性能。为了验证这一概念,我们利用工信部整合了来自前列腺组织样本的ST和MSI数据,并评估了ST衍生的柠檬酸盐-精胺分泌基因标记与MSI代谢测量的相关性。结论:MIIT是一个高度精确的、可定制的、开源的框架,用于整合在不同序列剖面上执行的空间组学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial integration of multi-omics data from serial sections using the novel Multi-Omics Imaging Integration Toolset.

Background: Truly understanding the cancer biology of heterogeneous tumors in precision medicine requires capturing the complexities of multiple omics levels and the spatial heterogeneity of cancer tissue. Techniques like mass spectrometry imaging (MSI) and spatial transcriptomics (ST) achieve this by spatially detecting metabolites and RNA but are often applied to serial sections. To fully leverage the advantage of such multi-omics data, the individual measurements need to be integrated into 1 dataset.

Results: We present the Multi-Omics Imaging Integration Toolset (MIIT), a Python framework for integrating spatially resolved multi-omics data. A key component of MIIT's integration is the registration of serial sections for which we developed a nonrigid registration algorithm, GreedyFHist. We validated GreedyFHist on 244 images from fresh-frozen serial sections, achieving state-of-the-art performance. As a proof of concept, we used MIIT to integrate ST and MSI data from prostate tissue samples and assessed the correlation of a gene signature for citrate-spermine secretion derived from ST with metabolic measurements from MSI.

Conclusion: MIIT is a highly accurate, customizable, open-source framework for integrating spatial omics technologies performed on different serial sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信