ChenKai Hu, FengXia Yuan, YingXing Wu, Shan Xiao, Yuan Xu, Xiang Peng, Lei He
{"title":"caspase-1/IL-1β轴的破坏通过改善线粒体稳态和减少焦亡来减轻心肌缺血/再灌注损伤。","authors":"ChenKai Hu, FengXia Yuan, YingXing Wu, Shan Xiao, Yuan Xu, Xiang Peng, Lei He","doi":"10.1080/10641963.2025.2506619","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pyroptosis is a novel kind of programmed cell death and Caspase-1 plays key roles in driving pyroptosis. The current study aims to elucidate the molecular mechanism affecting cardiomyocyte pyroptosis in myocardial ischemia/reperfusion (I/R) injury, both in vivo and in vitro.</p><p><strong>Methods: </strong>A murine model of myocardial I/R injury was established and then treated with lentivirus-mediated shRNA targeting Caspase-1 to evaluate the effect of Caspase-1 on myocardial I/R injury. Further, Caspase-1 was silenced in the cardiomyocytes following hypoxia-reoxygenation (H/R) to detect the function of Caspase-1 in mitochondrial homeostasis and cardiomyocyte pyroptosis.</p><p><strong>Results: </strong>Knockdown of Caspase-1 inhibited the secretion of interleukin-1 beta (IL-1β), improved cardiac dysfunction and decreased pyroptosis in vivo. The cardio-protective effect was verified in the H/R-induced cardiomyocyte model. Recombinant IL-1β protein reversed the inhibitory effect of Caspase-1 knockdown on pyroptosis.</p><p><strong>Conclusion: </strong>Overall, activating the Caspase-1/IL-1β axis by myocardial I/R injury causes mitochondrial homeostasis imbalance, pyroptosis, and the consequent cardiomyocyte injury.</p>","PeriodicalId":10333,"journal":{"name":"Clinical and Experimental Hypertension","volume":"47 1","pages":"2506619"},"PeriodicalIF":1.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disruption of the caspase-1/IL-1β axis alleviates myocardial Ischemia/Reperfusion injury via improvement of mitochondrial homeostasis and reduction of Pyroptosis.\",\"authors\":\"ChenKai Hu, FengXia Yuan, YingXing Wu, Shan Xiao, Yuan Xu, Xiang Peng, Lei He\",\"doi\":\"10.1080/10641963.2025.2506619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pyroptosis is a novel kind of programmed cell death and Caspase-1 plays key roles in driving pyroptosis. The current study aims to elucidate the molecular mechanism affecting cardiomyocyte pyroptosis in myocardial ischemia/reperfusion (I/R) injury, both in vivo and in vitro.</p><p><strong>Methods: </strong>A murine model of myocardial I/R injury was established and then treated with lentivirus-mediated shRNA targeting Caspase-1 to evaluate the effect of Caspase-1 on myocardial I/R injury. Further, Caspase-1 was silenced in the cardiomyocytes following hypoxia-reoxygenation (H/R) to detect the function of Caspase-1 in mitochondrial homeostasis and cardiomyocyte pyroptosis.</p><p><strong>Results: </strong>Knockdown of Caspase-1 inhibited the secretion of interleukin-1 beta (IL-1β), improved cardiac dysfunction and decreased pyroptosis in vivo. The cardio-protective effect was verified in the H/R-induced cardiomyocyte model. Recombinant IL-1β protein reversed the inhibitory effect of Caspase-1 knockdown on pyroptosis.</p><p><strong>Conclusion: </strong>Overall, activating the Caspase-1/IL-1β axis by myocardial I/R injury causes mitochondrial homeostasis imbalance, pyroptosis, and the consequent cardiomyocyte injury.</p>\",\"PeriodicalId\":10333,\"journal\":{\"name\":\"Clinical and Experimental Hypertension\",\"volume\":\"47 1\",\"pages\":\"2506619\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10641963.2025.2506619\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10641963.2025.2506619","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Disruption of the caspase-1/IL-1β axis alleviates myocardial Ischemia/Reperfusion injury via improvement of mitochondrial homeostasis and reduction of Pyroptosis.
Background: Pyroptosis is a novel kind of programmed cell death and Caspase-1 plays key roles in driving pyroptosis. The current study aims to elucidate the molecular mechanism affecting cardiomyocyte pyroptosis in myocardial ischemia/reperfusion (I/R) injury, both in vivo and in vitro.
Methods: A murine model of myocardial I/R injury was established and then treated with lentivirus-mediated shRNA targeting Caspase-1 to evaluate the effect of Caspase-1 on myocardial I/R injury. Further, Caspase-1 was silenced in the cardiomyocytes following hypoxia-reoxygenation (H/R) to detect the function of Caspase-1 in mitochondrial homeostasis and cardiomyocyte pyroptosis.
Results: Knockdown of Caspase-1 inhibited the secretion of interleukin-1 beta (IL-1β), improved cardiac dysfunction and decreased pyroptosis in vivo. The cardio-protective effect was verified in the H/R-induced cardiomyocyte model. Recombinant IL-1β protein reversed the inhibitory effect of Caspase-1 knockdown on pyroptosis.
Conclusion: Overall, activating the Caspase-1/IL-1β axis by myocardial I/R injury causes mitochondrial homeostasis imbalance, pyroptosis, and the consequent cardiomyocyte injury.
期刊介绍:
Clinical and Experimental Hypertension is a reputable journal that has converted to a full Open Access format starting from Volume 45 in 2023. While previous volumes are still accessible through a Pay to Read model, the journal now provides free and open access to its content. It serves as an international platform for the exchange of up-to-date scientific and clinical information concerning both human and animal hypertension. The journal publishes a wide range of articles, including full research papers, solicited and unsolicited reviews, and commentaries. Through these publications, the journal aims to enhance current understanding and support the timely detection, management, control, and prevention of hypertension-related conditions.
One notable aspect of Clinical and Experimental Hypertension is its coverage of special issues that focus on the proceedings of symposia dedicated to hypertension research. This feature allows researchers and clinicians to delve deeper into the latest advancements in this field.
The journal is abstracted and indexed in several renowned databases, including Pharmacoeconomics and Outcomes News (Online), Reactions Weekly (Online), CABI, EBSCOhost, Elsevier BV, International Atomic Energy Agency, and the National Library of Medicine, among others. These affiliations ensure that the journal's content receives broad visibility and facilitates its discoverability by professionals and researchers in related disciplines.