{"title":"基于ips衍生的神经元研究,gpi锚定朊病毒疾病对氧化应激敏感,显示依达拉奉治疗的潜力。","authors":"Kosuke Matsuzono, Hiroyuki Honda, Takafumi Mashiko, Reiji Koide, Eiji Sakashita, Hitoshi Endo, Tetsuyuki Kitamoto, Shigeru Fujimoto","doi":"10.1007/s00018-025-05698-6","DOIUrl":null,"url":null,"abstract":"<p><p>Only a few reports have generated induced pluripotent stem cells from patients with prion diseases, making it important to conduct translational studies using cells derived from individuals with prion protein (PRNP) mutations. In this study, we established induced pluripotent stem cells from a patient with a glycosylphosphatidylinositol-anchorless PRNP mutation (Y162X), which leads to abnormal deposits of prion protein in various organs. While no abnormal intracellular prion protein deposits were observed in the neurons differentiated from PRNP Y162X induced pluripotent stem cells, extracellular PrP aggregates secretions were significantly increased, and these cells were significantly more sensitive to oxidative stress compared to control cells. Utilizing this PRNP Y162X iPSC-derived neuron model, we discovered that edaravone reduced the sensitivity of PRNP Y162X cells to oxidative stress. Following this finding, we treated a PRNP Y162X patient with edaravone for two years, which successfully suppressed indicators of disease progression. Our study demonstrates that the pathology of the glycosylphosphatidylinositol-anchorless PRNP mutation is associated with oxidative stress and highlights the potential of induced pluripotent stem cell technology in identifying novel treatments for rare prion diseases.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"202"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081781/pdf/","citationCount":"0","resultStr":"{\"title\":\"GPI-anchorless prion disease is sensitive to oxidative stress and shows potential for treatment with edaravone, based on iPS-derived neuron study.\",\"authors\":\"Kosuke Matsuzono, Hiroyuki Honda, Takafumi Mashiko, Reiji Koide, Eiji Sakashita, Hitoshi Endo, Tetsuyuki Kitamoto, Shigeru Fujimoto\",\"doi\":\"10.1007/s00018-025-05698-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Only a few reports have generated induced pluripotent stem cells from patients with prion diseases, making it important to conduct translational studies using cells derived from individuals with prion protein (PRNP) mutations. In this study, we established induced pluripotent stem cells from a patient with a glycosylphosphatidylinositol-anchorless PRNP mutation (Y162X), which leads to abnormal deposits of prion protein in various organs. While no abnormal intracellular prion protein deposits were observed in the neurons differentiated from PRNP Y162X induced pluripotent stem cells, extracellular PrP aggregates secretions were significantly increased, and these cells were significantly more sensitive to oxidative stress compared to control cells. Utilizing this PRNP Y162X iPSC-derived neuron model, we discovered that edaravone reduced the sensitivity of PRNP Y162X cells to oxidative stress. Following this finding, we treated a PRNP Y162X patient with edaravone for two years, which successfully suppressed indicators of disease progression. Our study demonstrates that the pathology of the glycosylphosphatidylinositol-anchorless PRNP mutation is associated with oxidative stress and highlights the potential of induced pluripotent stem cell technology in identifying novel treatments for rare prion diseases.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"82 1\",\"pages\":\"202\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-025-05698-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05698-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
GPI-anchorless prion disease is sensitive to oxidative stress and shows potential for treatment with edaravone, based on iPS-derived neuron study.
Only a few reports have generated induced pluripotent stem cells from patients with prion diseases, making it important to conduct translational studies using cells derived from individuals with prion protein (PRNP) mutations. In this study, we established induced pluripotent stem cells from a patient with a glycosylphosphatidylinositol-anchorless PRNP mutation (Y162X), which leads to abnormal deposits of prion protein in various organs. While no abnormal intracellular prion protein deposits were observed in the neurons differentiated from PRNP Y162X induced pluripotent stem cells, extracellular PrP aggregates secretions were significantly increased, and these cells were significantly more sensitive to oxidative stress compared to control cells. Utilizing this PRNP Y162X iPSC-derived neuron model, we discovered that edaravone reduced the sensitivity of PRNP Y162X cells to oxidative stress. Following this finding, we treated a PRNP Y162X patient with edaravone for two years, which successfully suppressed indicators of disease progression. Our study demonstrates that the pathology of the glycosylphosphatidylinositol-anchorless PRNP mutation is associated with oxidative stress and highlights the potential of induced pluripotent stem cell technology in identifying novel treatments for rare prion diseases.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered