Ning Wang, Minghui Wu, Wenchao Gu, Chenglong Dai, Zongru Shao, K P Subbalakshmi
{"title":"MSFT-transformer:使用宏基因组数据进行疾病预测的多级融合表格变压器。","authors":"Ning Wang, Minghui Wu, Wenchao Gu, Chenglong Dai, Zongru Shao, K P Subbalakshmi","doi":"10.1093/bib/bbaf217","DOIUrl":null,"url":null,"abstract":"<p><p>More and more recent studies highlight the crucial role of the human microbiome in maintaining health, while modern advancements in metagenomic sequencing technologies have been accumulating data that are associated with human diseases. Although metagenomic data offer rich, multifaceted information, including taxonomic and functional abundance profiles, their full potential remains underutilized, as most approaches rely only on one type of information to discover and understand their related correlations with respect to disease occurrences. To address this limitation, we propose a multistage fusion tabular transformer architecture (MSFT-Transformer), aiming to effectively integrate various types of high-dimensional tabular information extracted from metagenomic data. Its multistage fusion strategy consists of three modules: a fusion-aware feature extraction module in the early stage to improve the extracted information from inputs, an alignment-enhanced fusion module in the mid stage to enforce the retainment of desired information in cross-modal learning, and an integrated feature decision layer in the late stage to incorporate desired cross-modal information. We conduct extensive experiments to evaluate the performance of MSFT-Transformer over state-of-the-art models on five standard datasets. Our results indicate that MSFT-Transformer provides stable performance gains with reduced computational costs. An ablation study illustrates the contributions of all three models compared with a reference multistage fusion transformer without these novel strategies. The result analysis implies the significant potential of the proposed model in future disease prediction with metagenomic data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078939/pdf/","citationCount":"0","resultStr":"{\"title\":\"MSFT-transformer: a multistage fusion tabular transformer for disease prediction using metagenomic data.\",\"authors\":\"Ning Wang, Minghui Wu, Wenchao Gu, Chenglong Dai, Zongru Shao, K P Subbalakshmi\",\"doi\":\"10.1093/bib/bbaf217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>More and more recent studies highlight the crucial role of the human microbiome in maintaining health, while modern advancements in metagenomic sequencing technologies have been accumulating data that are associated with human diseases. Although metagenomic data offer rich, multifaceted information, including taxonomic and functional abundance profiles, their full potential remains underutilized, as most approaches rely only on one type of information to discover and understand their related correlations with respect to disease occurrences. To address this limitation, we propose a multistage fusion tabular transformer architecture (MSFT-Transformer), aiming to effectively integrate various types of high-dimensional tabular information extracted from metagenomic data. Its multistage fusion strategy consists of three modules: a fusion-aware feature extraction module in the early stage to improve the extracted information from inputs, an alignment-enhanced fusion module in the mid stage to enforce the retainment of desired information in cross-modal learning, and an integrated feature decision layer in the late stage to incorporate desired cross-modal information. We conduct extensive experiments to evaluate the performance of MSFT-Transformer over state-of-the-art models on five standard datasets. Our results indicate that MSFT-Transformer provides stable performance gains with reduced computational costs. An ablation study illustrates the contributions of all three models compared with a reference multistage fusion transformer without these novel strategies. The result analysis implies the significant potential of the proposed model in future disease prediction with metagenomic data.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf217\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf217","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MSFT-transformer: a multistage fusion tabular transformer for disease prediction using metagenomic data.
More and more recent studies highlight the crucial role of the human microbiome in maintaining health, while modern advancements in metagenomic sequencing technologies have been accumulating data that are associated with human diseases. Although metagenomic data offer rich, multifaceted information, including taxonomic and functional abundance profiles, their full potential remains underutilized, as most approaches rely only on one type of information to discover and understand their related correlations with respect to disease occurrences. To address this limitation, we propose a multistage fusion tabular transformer architecture (MSFT-Transformer), aiming to effectively integrate various types of high-dimensional tabular information extracted from metagenomic data. Its multistage fusion strategy consists of three modules: a fusion-aware feature extraction module in the early stage to improve the extracted information from inputs, an alignment-enhanced fusion module in the mid stage to enforce the retainment of desired information in cross-modal learning, and an integrated feature decision layer in the late stage to incorporate desired cross-modal information. We conduct extensive experiments to evaluate the performance of MSFT-Transformer over state-of-the-art models on five standard datasets. Our results indicate that MSFT-Transformer provides stable performance gains with reduced computational costs. An ablation study illustrates the contributions of all three models compared with a reference multistage fusion transformer without these novel strategies. The result analysis implies the significant potential of the proposed model in future disease prediction with metagenomic data.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.