Circ_0000190通过调节miR-301a/MEOX2通路抑制三阴性乳腺癌的进展。

IF 3.6 3区 医学 Q2 ONCOLOGY
American journal of cancer research Pub Date : 2025-04-15 eCollection Date: 2025-01-01 DOI:10.62347/AMTI5713
Heng Liu, Xiunan Li, Gangyue Wang, Yu Ren, Zhenlie Fan, Xin Tang
{"title":"Circ_0000190通过调节miR-301a/MEOX2通路抑制三阴性乳腺癌的进展。","authors":"Heng Liu, Xiunan Li, Gangyue Wang, Yu Ren, Zhenlie Fan, Xin Tang","doi":"10.62347/AMTI5713","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA (circRNA) and microRNA (miRNA) play critical roles in regulating proliferation, apoptosis, and invasion in triple-negative breast cancer (TNBC) cells. To investigate their functional significance, we employed quantitative real-time PCR (qRT-PCR) to assess the differential expression of circ_0000190, miR-301a, and mesenchyme homeobox 2 (MEOX2) between TNBC cell lines and normal breast epithelial cells. Subsequently, we established overexpression and knockdown systems for these molecules to examine their effects on TNBC cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT). Additionally, we evaluated the impact of circ_0000190 overexpression on tumor growth using a mouse xenograft model, measuring tumor volume and weight. Our findings revealed that circ_0000190 and MEOX2 expression were significantly downregulated (P<0.05) in TNBC cells compared to normal breast epithelial cells, whereas miR-301a was upregulated (P<0.05). Knockdown of circ_0000190 promoted TNBC cell proliferation, migration, invasion, and EMT, while suppressing apoptosis. Mechanistically, circ_0000190 functioned as a molecular sponge for miR-301a, and its overexpression significantly inhibited miR-301a expression (P<0.001). Notably, miR-301a mimics partially reversed the suppressive effects of circ_0000190 overexpression on proliferation, migration, invasion, and EMT, as well as its pro-apoptotic effects (P<0.001). Furthermore, we identified MEOX2 as a direct target of miR-301a. MEOX2 knockdown attenuated the inhibitory effects of miR-301a silencing on proliferation, migration, invasion, and EMT, while also counteracting its pro-apoptotic function. In vivo experiments demonstrated that circ_0000190 overexpression significantly reduced tumor volume and weight (P<0.001), concomitant with elevated MEOX2 mRNA and protein levels (P<0.001) and decreased miR-301a expression (P<0.001). In conclusion, our study elucidates that circ_0000190 suppresses TNBC progression by downregulating miR-301a and upregulating MEOX2, forming a competitive endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 4","pages":"1559-1577"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circ_0000190 inhibits the progression of triple negative breast cancer by regulating miR-301a/MEOX2 pathway.\",\"authors\":\"Heng Liu, Xiunan Li, Gangyue Wang, Yu Ren, Zhenlie Fan, Xin Tang\",\"doi\":\"10.62347/AMTI5713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNA (circRNA) and microRNA (miRNA) play critical roles in regulating proliferation, apoptosis, and invasion in triple-negative breast cancer (TNBC) cells. To investigate their functional significance, we employed quantitative real-time PCR (qRT-PCR) to assess the differential expression of circ_0000190, miR-301a, and mesenchyme homeobox 2 (MEOX2) between TNBC cell lines and normal breast epithelial cells. Subsequently, we established overexpression and knockdown systems for these molecules to examine their effects on TNBC cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT). Additionally, we evaluated the impact of circ_0000190 overexpression on tumor growth using a mouse xenograft model, measuring tumor volume and weight. Our findings revealed that circ_0000190 and MEOX2 expression were significantly downregulated (P<0.05) in TNBC cells compared to normal breast epithelial cells, whereas miR-301a was upregulated (P<0.05). Knockdown of circ_0000190 promoted TNBC cell proliferation, migration, invasion, and EMT, while suppressing apoptosis. Mechanistically, circ_0000190 functioned as a molecular sponge for miR-301a, and its overexpression significantly inhibited miR-301a expression (P<0.001). Notably, miR-301a mimics partially reversed the suppressive effects of circ_0000190 overexpression on proliferation, migration, invasion, and EMT, as well as its pro-apoptotic effects (P<0.001). Furthermore, we identified MEOX2 as a direct target of miR-301a. MEOX2 knockdown attenuated the inhibitory effects of miR-301a silencing on proliferation, migration, invasion, and EMT, while also counteracting its pro-apoptotic function. In vivo experiments demonstrated that circ_0000190 overexpression significantly reduced tumor volume and weight (P<0.001), concomitant with elevated MEOX2 mRNA and protein levels (P<0.001) and decreased miR-301a expression (P<0.001). In conclusion, our study elucidates that circ_0000190 suppresses TNBC progression by downregulating miR-301a and upregulating MEOX2, forming a competitive endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA.</p>\",\"PeriodicalId\":7437,\"journal\":{\"name\":\"American journal of cancer research\",\"volume\":\"15 4\",\"pages\":\"1559-1577\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.62347/AMTI5713\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/AMTI5713","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环状RNA (circRNA)和微RNA (miRNA)在三阴性乳腺癌(TNBC)细胞的增殖、凋亡和侵袭调控中发挥关键作用。为了研究它们的功能意义,我们采用定量实时PCR (qRT-PCR)来评估TNBC细胞系和正常乳腺上皮细胞之间circ_0000190、miR-301a和间充质同源盒2 (MEOX2)的表达差异。随后,我们建立了这些分子的过表达和敲低系统,以检测它们对TNBC细胞增殖、凋亡、迁移、侵袭和上皮-间质转化(EMT)的影响。此外,我们使用小鼠异种移植模型,测量肿瘤体积和重量,评估circ_0000190过表达对肿瘤生长的影响。我们的研究结果显示circ_0000190和MEOX2的表达显著下调(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circ_0000190 inhibits the progression of triple negative breast cancer by regulating miR-301a/MEOX2 pathway.

Circular RNA (circRNA) and microRNA (miRNA) play critical roles in regulating proliferation, apoptosis, and invasion in triple-negative breast cancer (TNBC) cells. To investigate their functional significance, we employed quantitative real-time PCR (qRT-PCR) to assess the differential expression of circ_0000190, miR-301a, and mesenchyme homeobox 2 (MEOX2) between TNBC cell lines and normal breast epithelial cells. Subsequently, we established overexpression and knockdown systems for these molecules to examine their effects on TNBC cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT). Additionally, we evaluated the impact of circ_0000190 overexpression on tumor growth using a mouse xenograft model, measuring tumor volume and weight. Our findings revealed that circ_0000190 and MEOX2 expression were significantly downregulated (P<0.05) in TNBC cells compared to normal breast epithelial cells, whereas miR-301a was upregulated (P<0.05). Knockdown of circ_0000190 promoted TNBC cell proliferation, migration, invasion, and EMT, while suppressing apoptosis. Mechanistically, circ_0000190 functioned as a molecular sponge for miR-301a, and its overexpression significantly inhibited miR-301a expression (P<0.001). Notably, miR-301a mimics partially reversed the suppressive effects of circ_0000190 overexpression on proliferation, migration, invasion, and EMT, as well as its pro-apoptotic effects (P<0.001). Furthermore, we identified MEOX2 as a direct target of miR-301a. MEOX2 knockdown attenuated the inhibitory effects of miR-301a silencing on proliferation, migration, invasion, and EMT, while also counteracting its pro-apoptotic function. In vivo experiments demonstrated that circ_0000190 overexpression significantly reduced tumor volume and weight (P<0.001), concomitant with elevated MEOX2 mRNA and protein levels (P<0.001) and decreased miR-301a expression (P<0.001). In conclusion, our study elucidates that circ_0000190 suppresses TNBC progression by downregulating miR-301a and upregulating MEOX2, forming a competitive endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
3.80%
发文量
263
期刊介绍: The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信