{"title":"元花药通过促进ASCT2降解和抑制谷氨酰胺摄取来抑制头颈癌的生长。","authors":"Xin-Yi Chen, Xin Chen, Xiao-Hui Liang, Dong Lu, Rong-Rong Pan, Qing-Yi Xiong, Xiao-Xia Liu, Jia-Yi Lin, Li-Jun Zhang, Hong-Zhuan Chen, Jin-Mei Jin, Wei-Dong Zhang, Xin Luan","doi":"10.1038/s41401-025-01562-2","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) cells exhibit a high dependency on glutamine metabolism, making it an attractive target. Despite the well-established link between glutamine reliance and tumor progression, the specific role of glutamine transporters in HNSCC remains poorly understood. The alanine-serine-cysteine transporter 2 (ASCT2), a key glutamine transporter, is overexpressed in HNSCC, and its silencing has been shown to reduce intracellular glutamine and glutathione levels, inhibiting tumor growth. These facts suggest that targeting ASCT2-mediated glutamine uptake could offer a promising therapeutic strategy for HNSCC. But no clinically approved drugs directly target ASCT2, and challenges such as the limited stability of antisense oligonucleotides persist. In this study we evaluated the correlation between ASCT2-mediate glutamine metabolism and its impact on HNSCC patients. We established a virtual screening method followed by cytotoxic assays to identify small molecules that specifically target ASCT2. Among the top 15 candidates, we identified yuanhuacine (YC) as the most potent antitumor compound with IC<sub>50</sub> values of 1.43, 6.62, and 6.46 μM against HN6, CAL33, and SCC7 cells, respectively. We demonstrated that YC (0.3-5 μM) dose-dependently induced ASCT2 degradation by recruiting the E3 ubiquitin ligase RNF5, inhibiting glutamine uptake in HN6 cells. This disruption led to mitochondrial dysfunction and enhanced the therapeutic efficacy of YC. Our results highlight YC as a promising regulator of ASCT2-mediated glutamine metabolism in HNSCC.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake.\",\"authors\":\"Xin-Yi Chen, Xin Chen, Xiao-Hui Liang, Dong Lu, Rong-Rong Pan, Qing-Yi Xiong, Xiao-Xia Liu, Jia-Yi Lin, Li-Jun Zhang, Hong-Zhuan Chen, Jin-Mei Jin, Wei-Dong Zhang, Xin Luan\",\"doi\":\"10.1038/s41401-025-01562-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head and neck squamous cell carcinoma (HNSCC) cells exhibit a high dependency on glutamine metabolism, making it an attractive target. Despite the well-established link between glutamine reliance and tumor progression, the specific role of glutamine transporters in HNSCC remains poorly understood. The alanine-serine-cysteine transporter 2 (ASCT2), a key glutamine transporter, is overexpressed in HNSCC, and its silencing has been shown to reduce intracellular glutamine and glutathione levels, inhibiting tumor growth. These facts suggest that targeting ASCT2-mediated glutamine uptake could offer a promising therapeutic strategy for HNSCC. But no clinically approved drugs directly target ASCT2, and challenges such as the limited stability of antisense oligonucleotides persist. In this study we evaluated the correlation between ASCT2-mediate glutamine metabolism and its impact on HNSCC patients. We established a virtual screening method followed by cytotoxic assays to identify small molecules that specifically target ASCT2. Among the top 15 candidates, we identified yuanhuacine (YC) as the most potent antitumor compound with IC<sub>50</sub> values of 1.43, 6.62, and 6.46 μM against HN6, CAL33, and SCC7 cells, respectively. We demonstrated that YC (0.3-5 μM) dose-dependently induced ASCT2 degradation by recruiting the E3 ubiquitin ligase RNF5, inhibiting glutamine uptake in HN6 cells. This disruption led to mitochondrial dysfunction and enhanced the therapeutic efficacy of YC. Our results highlight YC as a promising regulator of ASCT2-mediated glutamine metabolism in HNSCC.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01562-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01562-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake.
Head and neck squamous cell carcinoma (HNSCC) cells exhibit a high dependency on glutamine metabolism, making it an attractive target. Despite the well-established link between glutamine reliance and tumor progression, the specific role of glutamine transporters in HNSCC remains poorly understood. The alanine-serine-cysteine transporter 2 (ASCT2), a key glutamine transporter, is overexpressed in HNSCC, and its silencing has been shown to reduce intracellular glutamine and glutathione levels, inhibiting tumor growth. These facts suggest that targeting ASCT2-mediated glutamine uptake could offer a promising therapeutic strategy for HNSCC. But no clinically approved drugs directly target ASCT2, and challenges such as the limited stability of antisense oligonucleotides persist. In this study we evaluated the correlation between ASCT2-mediate glutamine metabolism and its impact on HNSCC patients. We established a virtual screening method followed by cytotoxic assays to identify small molecules that specifically target ASCT2. Among the top 15 candidates, we identified yuanhuacine (YC) as the most potent antitumor compound with IC50 values of 1.43, 6.62, and 6.46 μM against HN6, CAL33, and SCC7 cells, respectively. We demonstrated that YC (0.3-5 μM) dose-dependently induced ASCT2 degradation by recruiting the E3 ubiquitin ligase RNF5, inhibiting glutamine uptake in HN6 cells. This disruption led to mitochondrial dysfunction and enhanced the therapeutic efficacy of YC. Our results highlight YC as a promising regulator of ASCT2-mediated glutamine metabolism in HNSCC.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.