TCREMP:从免疫库和单细胞测序数据中有效嵌入t细胞受体序列的生物信息学管道。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yulia Kremlyakova, Elizaveta K Vlasova, Daniil Luppov, Mikhail Shugay
{"title":"TCREMP:从免疫库和单细胞测序数据中有效嵌入t细胞受体序列的生物信息学管道。","authors":"Yulia Kremlyakova, Elizaveta K Vlasova, Daniil Luppov, Mikhail Shugay","doi":"10.1016/j.jmb.2025.169205","DOIUrl":null,"url":null,"abstract":"<p><p>T-cell receptors (TCRs) expressed by T-lymphocytes can recognize antigens presented on the surface of our cells to tell normal cells from infected and malignant ones. An extremely diverse set of TCRs is generated during T-lymphocyte formation and can be surveyed using high-throughput sequencing to tell the story of past and ongoing immune responses. Proper handling of TCR sequencing data and using it to trace antigen specificities is a challenging bioinformatic task. Here we present TCREMP (TCR embedding via Prototypes), a pipeline to digitize TCR amino acid sequences based on their similarity to commonly observed sequences that can provide a reference point for comparative analysis and aid in decoding antigen specificity prediction across TCR repertoire samples that one may find useful for adaptive immunity studies. Our results show that TCREMP embeddings can efficiently distinguish distinct antigen-specific T-cell populations based on single-cell and Major Histocompatibility Complex (MHCs)-multimer-sorted repertoire sequencing data. TCREMP is freely available at https://github.com/antigenomics/tcremp.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169205"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCREMP: A Bioinformatic Pipeline for Efficient Embedding of T-cell Receptor Sequences from Immune Repertoire and Single-cell Sequencing Data.\",\"authors\":\"Yulia Kremlyakova, Elizaveta K Vlasova, Daniil Luppov, Mikhail Shugay\",\"doi\":\"10.1016/j.jmb.2025.169205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T-cell receptors (TCRs) expressed by T-lymphocytes can recognize antigens presented on the surface of our cells to tell normal cells from infected and malignant ones. An extremely diverse set of TCRs is generated during T-lymphocyte formation and can be surveyed using high-throughput sequencing to tell the story of past and ongoing immune responses. Proper handling of TCR sequencing data and using it to trace antigen specificities is a challenging bioinformatic task. Here we present TCREMP (TCR embedding via Prototypes), a pipeline to digitize TCR amino acid sequences based on their similarity to commonly observed sequences that can provide a reference point for comparative analysis and aid in decoding antigen specificity prediction across TCR repertoire samples that one may find useful for adaptive immunity studies. Our results show that TCREMP embeddings can efficiently distinguish distinct antigen-specific T-cell populations based on single-cell and Major Histocompatibility Complex (MHCs)-multimer-sorted repertoire sequencing data. TCREMP is freely available at https://github.com/antigenomics/tcremp.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"169205\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2025.169205\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169205","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由t淋巴细胞表达的t细胞受体(T-cell receptor, TCRs)能够识别细胞表面的抗原,从而区分正常细胞、感染细胞和恶性细胞。在t淋巴细胞形成过程中产生了一组极其多样化的tcr,可以使用高通量测序来调查过去和正在进行的免疫反应。正确处理TCR测序数据并利用其追踪抗原特异性是一项具有挑战性的生物信息学任务。在这里,我们提出了TCREMP(通过原型嵌入TCR),这是一个基于TCR氨基酸序列与常见观察序列的相似性来数字化TCR氨基酸序列的管道,可以为比较分析提供参考点,并有助于解码抗原特异性预测跨TCR库样本,这可能对适应性免疫研究有用。我们的研究结果表明,基于单细胞和主要组织相容性复合体(MHCs)-多排序的曲目测序数据,TCREMP包埋可以有效地区分不同的抗原特异性t细胞群。TCREMP可在https://github.com/antigenomics/tcremp免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCREMP: A Bioinformatic Pipeline for Efficient Embedding of T-cell Receptor Sequences from Immune Repertoire and Single-cell Sequencing Data.

T-cell receptors (TCRs) expressed by T-lymphocytes can recognize antigens presented on the surface of our cells to tell normal cells from infected and malignant ones. An extremely diverse set of TCRs is generated during T-lymphocyte formation and can be surveyed using high-throughput sequencing to tell the story of past and ongoing immune responses. Proper handling of TCR sequencing data and using it to trace antigen specificities is a challenging bioinformatic task. Here we present TCREMP (TCR embedding via Prototypes), a pipeline to digitize TCR amino acid sequences based on their similarity to commonly observed sequences that can provide a reference point for comparative analysis and aid in decoding antigen specificity prediction across TCR repertoire samples that one may find useful for adaptive immunity studies. Our results show that TCREMP embeddings can efficiently distinguish distinct antigen-specific T-cell populations based on single-cell and Major Histocompatibility Complex (MHCs)-multimer-sorted repertoire sequencing data. TCREMP is freely available at https://github.com/antigenomics/tcremp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信