Megan R Shaffer, Elizabeth Andruszkiewicz Allan, Amy M Van Cise, Kim M Parsons, Andrew Olaf Shelton, Ryan P Kelly
{"title":"元条形码中的观察偏差。","authors":"Megan R Shaffer, Elizabeth Andruszkiewicz Allan, Amy M Van Cise, Kim M Parsons, Andrew Olaf Shelton, Ryan P Kelly","doi":"10.1111/1755-0998.14119","DOIUrl":null,"url":null,"abstract":"<p><p>DNA metabarcoding is subject to observation bias associated with PCR and sequencing, which can result in observed read proportions differing from actual species proportions in the DNA extract. Here, we amplify and sequence a mock community of known composition containing marine fishes and cetaceans using four different primer sets and a variety of PCR conditions. We first compare metabarcoding observations to two different sets of expected species proportions based on total genomic DNA and on target mitochondrial template DNA. We find that calibrating observed read proportions based on template DNA concentration is most appropriate as it isolates PCR amplification bias; calibration with total genomic DNA results in bias that can be attributed to both PCR amplification bias and differing ratios of template to total genomic DNA. We then model the remaining amplification bias and find that approximately 60% can be explained by inherent species-specific DNA characteristics. These include primer-template mismatches, amplicon fragment length, and GC content, which vary somewhat across Taq polymerases. Finally, we investigate how different PCR protocols influence community composition regardless of expected proportions and find that changing protocols most strongly influence the amplification of templates with primer mismatches. Our findings suggest that using primer-template pairs without mismatches and targeting a narrow taxonomic group can yield more repeatable and accurate estimates of species' true, underlying DNA template proportions. These findings identify key factors that should be considered when designing studies that aim to apply metabarcoding data quantitatively.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14119"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation Bias in Metabarcoding.\",\"authors\":\"Megan R Shaffer, Elizabeth Andruszkiewicz Allan, Amy M Van Cise, Kim M Parsons, Andrew Olaf Shelton, Ryan P Kelly\",\"doi\":\"10.1111/1755-0998.14119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA metabarcoding is subject to observation bias associated with PCR and sequencing, which can result in observed read proportions differing from actual species proportions in the DNA extract. Here, we amplify and sequence a mock community of known composition containing marine fishes and cetaceans using four different primer sets and a variety of PCR conditions. We first compare metabarcoding observations to two different sets of expected species proportions based on total genomic DNA and on target mitochondrial template DNA. We find that calibrating observed read proportions based on template DNA concentration is most appropriate as it isolates PCR amplification bias; calibration with total genomic DNA results in bias that can be attributed to both PCR amplification bias and differing ratios of template to total genomic DNA. We then model the remaining amplification bias and find that approximately 60% can be explained by inherent species-specific DNA characteristics. These include primer-template mismatches, amplicon fragment length, and GC content, which vary somewhat across Taq polymerases. Finally, we investigate how different PCR protocols influence community composition regardless of expected proportions and find that changing protocols most strongly influence the amplification of templates with primer mismatches. Our findings suggest that using primer-template pairs without mismatches and targeting a narrow taxonomic group can yield more repeatable and accurate estimates of species' true, underlying DNA template proportions. These findings identify key factors that should be considered when designing studies that aim to apply metabarcoding data quantitatively.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14119\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14119\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14119","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
DNA metabarcoding is subject to observation bias associated with PCR and sequencing, which can result in observed read proportions differing from actual species proportions in the DNA extract. Here, we amplify and sequence a mock community of known composition containing marine fishes and cetaceans using four different primer sets and a variety of PCR conditions. We first compare metabarcoding observations to two different sets of expected species proportions based on total genomic DNA and on target mitochondrial template DNA. We find that calibrating observed read proportions based on template DNA concentration is most appropriate as it isolates PCR amplification bias; calibration with total genomic DNA results in bias that can be attributed to both PCR amplification bias and differing ratios of template to total genomic DNA. We then model the remaining amplification bias and find that approximately 60% can be explained by inherent species-specific DNA characteristics. These include primer-template mismatches, amplicon fragment length, and GC content, which vary somewhat across Taq polymerases. Finally, we investigate how different PCR protocols influence community composition regardless of expected proportions and find that changing protocols most strongly influence the amplification of templates with primer mismatches. Our findings suggest that using primer-template pairs without mismatches and targeting a narrow taxonomic group can yield more repeatable and accurate estimates of species' true, underlying DNA template proportions. These findings identify key factors that should be considered when designing studies that aim to apply metabarcoding data quantitatively.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.