Dmitrii Belogolovskii, Md Masudur Rahman, Karl Johnson, Vladimir Fedorov, Andrew Grieco, Nikola Alic, Abdoulaye Ndao, Paul K. L. Yu, Yeshaiahu Fainman
{"title":"通过可见光微调富硅氮化物双向折射率的大变化","authors":"Dmitrii Belogolovskii, Md Masudur Rahman, Karl Johnson, Vladimir Fedorov, Andrew Grieco, Nikola Alic, Abdoulaye Ndao, Paul K. L. Yu, Yeshaiahu Fainman","doi":"10.1002/adom.202403420","DOIUrl":null,"url":null,"abstract":"<p>Phase-sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous-wave (CW) visible light (405 and 520 nm) trimming of plasma-enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS-compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost-effective setup for real-time resonance tracking in micro-ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10<sup>−2</sup>. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase-sensitive integrated photonic devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 14","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403420","citationCount":"0","resultStr":"{\"title\":\"Large Bidirectional Refractive Index Change in Silicon-rich Nitride via Visible Light Trimming\",\"authors\":\"Dmitrii Belogolovskii, Md Masudur Rahman, Karl Johnson, Vladimir Fedorov, Andrew Grieco, Nikola Alic, Abdoulaye Ndao, Paul K. L. Yu, Yeshaiahu Fainman\",\"doi\":\"10.1002/adom.202403420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phase-sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous-wave (CW) visible light (405 and 520 nm) trimming of plasma-enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS-compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost-effective setup for real-time resonance tracking in micro-ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10<sup>−2</sup>. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase-sensitive integrated photonic devices.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 14\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403420\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403420","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Large Bidirectional Refractive Index Change in Silicon-rich Nitride via Visible Light Trimming
Phase-sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous-wave (CW) visible light (405 and 520 nm) trimming of plasma-enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS-compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost-effective setup for real-time resonance tracking in micro-ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10−2. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase-sensitive integrated photonic devices.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.