{"title":"半群上Kannappan-sine加法律的推广","authors":"Ahmed Jafar, Omar Ajebbar, Elhoucien Elqorachi","doi":"10.1007/s00010-024-01138-1","DOIUrl":null,"url":null,"abstract":"<div><p>Given a semigroup <i>S</i> equipped with an involutive automorphic <span>\\(\\sigma :S \\rightarrow S\\)</span>, we determine the complex-valued solutions of the following generalization of the Kannappan-sine addition law </p><div><div><span>$$f(x\\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\\; x,y \\in S. $$</span></div></div><p>As an application we obtain the solutions of the following functional equation </p><div><div><span>$$f(x\\sigma (y)z_0)=f(x)f(z_1y)+f(z_1x)f(y),\\; x,y \\in S, $$</span></div></div><p>where <span>\\(z_0, z_1\\)</span> are two fixed elements in <i>S</i> such that <span>\\(z_0\\ne z_1\\)</span>. The continuous solutions on topological semigroups are given. We illustrate the main result with two examples.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1403 - 1420"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the Kannappan-sine addition law on semigroups\",\"authors\":\"Ahmed Jafar, Omar Ajebbar, Elhoucien Elqorachi\",\"doi\":\"10.1007/s00010-024-01138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a semigroup <i>S</i> equipped with an involutive automorphic <span>\\\\(\\\\sigma :S \\\\rightarrow S\\\\)</span>, we determine the complex-valued solutions of the following generalization of the Kannappan-sine addition law </p><div><div><span>$$f(x\\\\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\\\\; x,y \\\\in S. $$</span></div></div><p>As an application we obtain the solutions of the following functional equation </p><div><div><span>$$f(x\\\\sigma (y)z_0)=f(x)f(z_1y)+f(z_1x)f(y),\\\\; x,y \\\\in S, $$</span></div></div><p>where <span>\\\\(z_0, z_1\\\\)</span> are two fixed elements in <i>S</i> such that <span>\\\\(z_0\\\\ne z_1\\\\)</span>. The continuous solutions on topological semigroups are given. We illustrate the main result with two examples.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"1403 - 1420\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01138-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01138-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A generalization of the Kannappan-sine addition law on semigroups
Given a semigroup S equipped with an involutive automorphic \(\sigma :S \rightarrow S\), we determine the complex-valued solutions of the following generalization of the Kannappan-sine addition law
$$f(x\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\; x,y \in S. $$
As an application we obtain the solutions of the following functional equation
where \(z_0, z_1\) are two fixed elements in S such that \(z_0\ne z_1\). The continuous solutions on topological semigroups are given. We illustrate the main result with two examples.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.