半群上Kannappan-sine加法律的推广

IF 0.9 3区 数学 Q2 MATHEMATICS
Ahmed Jafar, Omar Ajebbar, Elhoucien Elqorachi
{"title":"半群上Kannappan-sine加法律的推广","authors":"Ahmed Jafar,&nbsp;Omar Ajebbar,&nbsp;Elhoucien Elqorachi","doi":"10.1007/s00010-024-01138-1","DOIUrl":null,"url":null,"abstract":"<div><p>Given a semigroup <i>S</i> equipped with an involutive automorphic <span>\\(\\sigma :S \\rightarrow S\\)</span>, we determine the complex-valued solutions of the following generalization of the Kannappan-sine addition law </p><div><div><span>$$f(x\\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\\; x,y \\in S. $$</span></div></div><p>As an application we obtain the solutions of the following functional equation </p><div><div><span>$$f(x\\sigma (y)z_0)=f(x)f(z_1y)+f(z_1x)f(y),\\; x,y \\in S, $$</span></div></div><p>where <span>\\(z_0, z_1\\)</span> are two fixed elements in <i>S</i> such that <span>\\(z_0\\ne z_1\\)</span>. The continuous solutions on topological semigroups are given. We illustrate the main result with two examples.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1403 - 1420"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the Kannappan-sine addition law on semigroups\",\"authors\":\"Ahmed Jafar,&nbsp;Omar Ajebbar,&nbsp;Elhoucien Elqorachi\",\"doi\":\"10.1007/s00010-024-01138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a semigroup <i>S</i> equipped with an involutive automorphic <span>\\\\(\\\\sigma :S \\\\rightarrow S\\\\)</span>, we determine the complex-valued solutions of the following generalization of the Kannappan-sine addition law </p><div><div><span>$$f(x\\\\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\\\\; x,y \\\\in S. $$</span></div></div><p>As an application we obtain the solutions of the following functional equation </p><div><div><span>$$f(x\\\\sigma (y)z_0)=f(x)f(z_1y)+f(z_1x)f(y),\\\\; x,y \\\\in S, $$</span></div></div><p>where <span>\\\\(z_0, z_1\\\\)</span> are two fixed elements in <i>S</i> such that <span>\\\\(z_0\\\\ne z_1\\\\)</span>. The continuous solutions on topological semigroups are given. We illustrate the main result with two examples.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"1403 - 1420\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01138-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01138-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有对合自同构\(\sigma :S \rightarrow S\)的半群S,我们确定了kannappan -sin加法律的以下推广的复值解$$f(x\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\; x,y \in S. $$作为应用,我们得到了以下函数方程$$f(x\sigma (y)z_0)=f(x)f(z_1y)+f(z_1x)f(y),\; x,y \in S, $$的解,其中\(z_0, z_1\)是S中的两个固定元素,使得\(z_0\ne z_1\)。给出了拓扑半群的连续解。我们用两个例子来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of the Kannappan-sine addition law on semigroups

Given a semigroup S equipped with an involutive automorphic \(\sigma :S \rightarrow S\), we determine the complex-valued solutions of the following generalization of the Kannappan-sine addition law

$$f(x\sigma (y)z_0)=f(x)g(y)+f(y)g(x),\; x,y \in S. $$

As an application we obtain the solutions of the following functional equation

$$f(x\sigma (y)z_0)=f(x)f(z_1y)+f(z_1x)f(y),\; x,y \in S, $$

where \(z_0, z_1\) are two fixed elements in S such that \(z_0\ne z_1\). The continuous solutions on topological semigroups are given. We illustrate the main result with two examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信