Lehmer-Euler数的同余性质

IF 0.9 3区 数学 Q2 MATHEMATICS
Takao Komatsu, Guo-Dong Liu
{"title":"Lehmer-Euler数的同余性质","authors":"Takao Komatsu,&nbsp;Guo-Dong Liu","doi":"10.1007/s00010-024-01150-5","DOIUrl":null,"url":null,"abstract":"<div><p>Certain generalization of Euler numbers was defined in 1935 by Lehmer using cubic roots of unity, as a natural generalization of Bernoulli and Euler numbers. In this paper, Lehmer’s generalized Euler numbers are studied to give certain congruence properties together with recurrence and explicit formulas of the numbers. We also show a new polynomial sequence and its properties. Some identities including Euler and central factorial numbers are obtained.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1337 - 1355"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruence properties of Lehmer-Euler numbers\",\"authors\":\"Takao Komatsu,&nbsp;Guo-Dong Liu\",\"doi\":\"10.1007/s00010-024-01150-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Certain generalization of Euler numbers was defined in 1935 by Lehmer using cubic roots of unity, as a natural generalization of Bernoulli and Euler numbers. In this paper, Lehmer’s generalized Euler numbers are studied to give certain congruence properties together with recurrence and explicit formulas of the numbers. We also show a new polynomial sequence and its properties. Some identities including Euler and central factorial numbers are obtained.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"1337 - 1355\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01150-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01150-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Lehmer在1935年用单位的三次方根定义了欧拉数的某种推广,作为伯努利数和欧拉数的自然推广。本文研究了Lehmer广义欧拉数,给出了若干同余性质,并给出了这些数的递归式和显式公式。我们还给出了一个新的多项式序列及其性质。得到了欧拉数和中心阶乘数等恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruence properties of Lehmer-Euler numbers

Certain generalization of Euler numbers was defined in 1935 by Lehmer using cubic roots of unity, as a natural generalization of Bernoulli and Euler numbers. In this paper, Lehmer’s generalized Euler numbers are studied to give certain congruence properties together with recurrence and explicit formulas of the numbers. We also show a new polynomial sequence and its properties. Some identities including Euler and central factorial numbers are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信