Lawvere的Frobenius互易,Grandis的模连接和Dilworth的抽象主理想

IF 0.6 4区 数学 Q3 MATHEMATICS
Amartya Goswami, Zurab Janelidze, Graham Manuell
{"title":"Lawvere的Frobenius互易,Grandis的模连接和Dilworth的抽象主理想","authors":"Amartya Goswami,&nbsp;Zurab Janelidze,&nbsp;Graham Manuell","doi":"10.1007/s10485-025-09808-0","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this short note is to fill a gap in the literature: Frobenius reciprocity in the theory of doctrines is closely related to modular connections in projective homological algebra and the notion of a principal element in abstract commutative ideal theory. These concepts are based on particular properties of Galois connections which play an important role also in the abstract study of group-like structures from the perspective of categorical/universal algebra; such role stems from a classical and basic result in group theory: the lattice isomorphism theorem.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-025-09808-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Lawvere’s Frobenius Reciprocity, the Modular Connections of Grandis and Dilworth’s Abstract Principal Ideals\",\"authors\":\"Amartya Goswami,&nbsp;Zurab Janelidze,&nbsp;Graham Manuell\",\"doi\":\"10.1007/s10485-025-09808-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this short note is to fill a gap in the literature: Frobenius reciprocity in the theory of doctrines is closely related to modular connections in projective homological algebra and the notion of a principal element in abstract commutative ideal theory. These concepts are based on particular properties of Galois connections which play an important role also in the abstract study of group-like structures from the perspective of categorical/universal algebra; such role stems from a classical and basic result in group theory: the lattice isomorphism theorem.\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-025-09808-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09808-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09808-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这篇简短的笔记的目的是填补文献上的空白:学说理论中的Frobenius互易与射影同调代数中的模连接和抽象交换理想理论中的主元概念密切相关。这些概念是基于伽罗瓦连接的特殊性质,这些性质在类群结构的抽象研究中也起着重要的作用,从范畴/泛代数的角度来看;这种作用源于群论中一个经典而基本的结果:格同构定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lawvere’s Frobenius Reciprocity, the Modular Connections of Grandis and Dilworth’s Abstract Principal Ideals

The purpose of this short note is to fill a gap in the literature: Frobenius reciprocity in the theory of doctrines is closely related to modular connections in projective homological algebra and the notion of a principal element in abstract commutative ideal theory. These concepts are based on particular properties of Galois connections which play an important role also in the abstract study of group-like structures from the perspective of categorical/universal algebra; such role stems from a classical and basic result in group theory: the lattice isomorphism theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信