回到膨胀状态方程的Mukhanov参数化

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Barun Kumar Pal
{"title":"回到膨胀状态方程的Mukhanov参数化","authors":"Barun Kumar Pal","doi":"10.1140/epjc/s10052-025-14259-x","DOIUrl":null,"url":null,"abstract":"<div><p>We have re-examined Mukhanov parametrization for inflationary equation of state, <span>\\(1+\\omega =\\frac{\\beta }{({N}+1)^\\alpha }\\)</span>, in the light of Planck 2018 results and latest bound of tensor-to-scalar ratio employing Hamilton–Jacobi formalism. We have found that the current observational values of scalar spectral index and tensor-to-scalar ratio can be used efficiently to constrain the model parameters. The recent bound of <span>\\(r&lt;0.032\\)</span> has been used to put an upper bound on one of the model parameter. Whereas 1-<span>\\(\\sigma \\)</span> bound of the scalar spectral index <span>\\(0.9607\\le n_{_S}\\le 0.9691\\)</span> along with the upper bound of tensor-to-scalar ratio provided restriction on the other model parameter <span>\\(1.50&lt;\\alpha \\le 2.20\\)</span>. These bounds however depend on the number of e-foldings still left before the end of inflation and whenever <span>\\(1.50&lt;\\alpha \\le 2.20\\)</span> we can find appropriate values of the other model parameter <span>\\(\\beta \\)</span> so that the observational predictions are in tune with the latest available inflationary observables. We have further utilized the predictions from forthcoming CMB missions in the likes of CMB-S4 and LiteBIRD in order to obtain bounds on the model parameters. We find that detection of gravity waves would help us constrain the model parameters further. But in the absence of detection of primordial gravity wave signal by these CMB missions may rule out Mukhanov parametrization.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14259-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Returning back to Mukhanov parametrization of inflationary equation of state\",\"authors\":\"Barun Kumar Pal\",\"doi\":\"10.1140/epjc/s10052-025-14259-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have re-examined Mukhanov parametrization for inflationary equation of state, <span>\\\\(1+\\\\omega =\\\\frac{\\\\beta }{({N}+1)^\\\\alpha }\\\\)</span>, in the light of Planck 2018 results and latest bound of tensor-to-scalar ratio employing Hamilton–Jacobi formalism. We have found that the current observational values of scalar spectral index and tensor-to-scalar ratio can be used efficiently to constrain the model parameters. The recent bound of <span>\\\\(r&lt;0.032\\\\)</span> has been used to put an upper bound on one of the model parameter. Whereas 1-<span>\\\\(\\\\sigma \\\\)</span> bound of the scalar spectral index <span>\\\\(0.9607\\\\le n_{_S}\\\\le 0.9691\\\\)</span> along with the upper bound of tensor-to-scalar ratio provided restriction on the other model parameter <span>\\\\(1.50&lt;\\\\alpha \\\\le 2.20\\\\)</span>. These bounds however depend on the number of e-foldings still left before the end of inflation and whenever <span>\\\\(1.50&lt;\\\\alpha \\\\le 2.20\\\\)</span> we can find appropriate values of the other model parameter <span>\\\\(\\\\beta \\\\)</span> so that the observational predictions are in tune with the latest available inflationary observables. We have further utilized the predictions from forthcoming CMB missions in the likes of CMB-S4 and LiteBIRD in order to obtain bounds on the model parameters. We find that detection of gravity waves would help us constrain the model parameters further. But in the absence of detection of primordial gravity wave signal by these CMB missions may rule out Mukhanov parametrization.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14259-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14259-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14259-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

根据Planck 2018的结果和采用Hamilton-Jacobi形式的张量-标量比的最新界,我们重新检查了暴胀状态方程\(1+\omega =\frac{\beta }{({N}+1)^\alpha }\)的Mukhanov参数化。我们发现标量谱指数和张量标量比的当前观测值可以有效地约束模型参数。最近的\(r<0.032\)的边界已经被用来为模型参数之一设置一个上限。而标量谱指数的1- \(\sigma \)界\(0.9607\le n_{_S}\le 0.9691\)和张量标量比的上界对其他模型参数\(1.50<\alpha \le 2.20\)提供了约束。然而,这些界限取决于在暴胀结束之前仍然留下的电子折叠的数量,无论何时\(1.50<\alpha \le 2.20\)我们都可以找到其他模型参数的适当值\(\beta \),以便观测预测与最新可用的暴胀观测值保持一致。我们进一步利用即将到来的CMB任务的预测,如CMB- s4和LiteBIRD,以获得模型参数的界限。我们发现探测重力波将帮助我们进一步约束模型参数。但由于这些CMB任务没有探测到原始重力波信号,可能会排除Mukhanov参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Returning back to Mukhanov parametrization of inflationary equation of state

We have re-examined Mukhanov parametrization for inflationary equation of state, \(1+\omega =\frac{\beta }{({N}+1)^\alpha }\), in the light of Planck 2018 results and latest bound of tensor-to-scalar ratio employing Hamilton–Jacobi formalism. We have found that the current observational values of scalar spectral index and tensor-to-scalar ratio can be used efficiently to constrain the model parameters. The recent bound of \(r<0.032\) has been used to put an upper bound on one of the model parameter. Whereas 1-\(\sigma \) bound of the scalar spectral index \(0.9607\le n_{_S}\le 0.9691\) along with the upper bound of tensor-to-scalar ratio provided restriction on the other model parameter \(1.50<\alpha \le 2.20\). These bounds however depend on the number of e-foldings still left before the end of inflation and whenever \(1.50<\alpha \le 2.20\) we can find appropriate values of the other model parameter \(\beta \) so that the observational predictions are in tune with the latest available inflationary observables. We have further utilized the predictions from forthcoming CMB missions in the likes of CMB-S4 and LiteBIRD in order to obtain bounds on the model parameters. We find that detection of gravity waves would help us constrain the model parameters further. But in the absence of detection of primordial gravity wave signal by these CMB missions may rule out Mukhanov parametrization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信