张量网络法求解带磁场的Ising模型

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Myung-Hoon Chung
{"title":"张量网络法求解带磁场的Ising模型","authors":"Myung-Hoon Chung","doi":"10.1007/s40042-025-01350-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the two-dimensional square lattice Ising ferromagnet and antiferromagnet with a magnetic field by using tensor network method. Focusing on the role of gauge fixing, we present the partition function in terms of a tensor network. The tensor has a different symmetry property for ferromagnets and antiferromagnets. The tensor network of the partition function is interpreted as a multiple product of the one-dimensional quantum Hamiltonian. We perform infinite density matrix renormalization group to contract the two-dimensional tensor network. We present the numerical result of magnetization and entanglement entropy for the Ising ferromagnet and antiferromagnet side by side. To determine the critical line in the parameter space of the temperature and magnetic field, we use the half-chain entanglement entropy of the one-dimensional quantum state. The entanglement entropy precisely indicates the critical line forming the parabolic shape for the antiferromagnetic case, but shows the critical point for the ferromagnetic case.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"86 10","pages":"957 - 962"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor network method for solving the Ising model with a magnetic field\",\"authors\":\"Myung-Hoon Chung\",\"doi\":\"10.1007/s40042-025-01350-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the two-dimensional square lattice Ising ferromagnet and antiferromagnet with a magnetic field by using tensor network method. Focusing on the role of gauge fixing, we present the partition function in terms of a tensor network. The tensor has a different symmetry property for ferromagnets and antiferromagnets. The tensor network of the partition function is interpreted as a multiple product of the one-dimensional quantum Hamiltonian. We perform infinite density matrix renormalization group to contract the two-dimensional tensor network. We present the numerical result of magnetization and entanglement entropy for the Ising ferromagnet and antiferromagnet side by side. To determine the critical line in the parameter space of the temperature and magnetic field, we use the half-chain entanglement entropy of the one-dimensional quantum state. The entanglement entropy precisely indicates the critical line forming the parabolic shape for the antiferromagnetic case, but shows the critical point for the ferromagnetic case.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"86 10\",\"pages\":\"957 - 962\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-025-01350-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-025-01350-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文用张量网络方法研究了二维方形晶格Ising铁磁体和带磁场的反铁磁体。针对规范固定的作用,我们给出了张量网络的配分函数。张量对铁磁体和反铁磁体具有不同的对称性质。配分函数的张量网络被解释为一维量子哈密顿量的多重积。我们使用无限密度矩阵重整化群来压缩二维张量网络。我们给出了伊辛铁磁体和反铁磁体的磁化和纠缠熵的数值结果。为了确定温度和磁场参数空间中的临界线,我们使用一维量子态的半链纠缠熵。在反铁磁的情况下,纠缠熵精确地表示形成抛物线的临界线,而在铁磁的情况下则显示临界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor network method for solving the Ising model with a magnetic field

We study the two-dimensional square lattice Ising ferromagnet and antiferromagnet with a magnetic field by using tensor network method. Focusing on the role of gauge fixing, we present the partition function in terms of a tensor network. The tensor has a different symmetry property for ferromagnets and antiferromagnets. The tensor network of the partition function is interpreted as a multiple product of the one-dimensional quantum Hamiltonian. We perform infinite density matrix renormalization group to contract the two-dimensional tensor network. We present the numerical result of magnetization and entanglement entropy for the Ising ferromagnet and antiferromagnet side by side. To determine the critical line in the parameter space of the temperature and magnetic field, we use the half-chain entanglement entropy of the one-dimensional quantum state. The entanglement entropy precisely indicates the critical line forming the parabolic shape for the antiferromagnetic case, but shows the critical point for the ferromagnetic case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信