注意广义随机多边形的方差

IF 0.9 3区 数学 Q2 MATHEMATICS
Ferenc Fodor, Balázs Grünfelder
{"title":"注意广义随机多边形的方差","authors":"Ferenc Fodor,&nbsp;Balázs Grünfelder","doi":"10.1007/s00010-024-01147-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a probability model in which the hull of a sample of i.i.d. uniform random points from a convex disc <i>K</i> is formed by the intersection of all translates of another suitable fixed convex disc <i>L</i> that contain the sample. Such an object is called a random <i>L</i>-polygon in <i>K</i>. We assume that both <i>K</i> and <i>L</i> have <span>\\(C^2_+\\)</span> smooth boundaries, and we prove upper bounds on the variance of the number of vertices and missed area of random <i>L</i>-polygons assuming different curvature conditions. We also transfer some of our result to a circumscribed variant of this model.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"869 - 882"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01147-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Note on the variance of generalized random polygons\",\"authors\":\"Ferenc Fodor,&nbsp;Balázs Grünfelder\",\"doi\":\"10.1007/s00010-024-01147-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a probability model in which the hull of a sample of i.i.d. uniform random points from a convex disc <i>K</i> is formed by the intersection of all translates of another suitable fixed convex disc <i>L</i> that contain the sample. Such an object is called a random <i>L</i>-polygon in <i>K</i>. We assume that both <i>K</i> and <i>L</i> have <span>\\\\(C^2_+\\\\)</span> smooth boundaries, and we prove upper bounds on the variance of the number of vertices and missed area of random <i>L</i>-polygons assuming different curvature conditions. We also transfer some of our result to a circumscribed variant of this model.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"869 - 882\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01147-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01147-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01147-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个概率模型,在这个模型中,来自一个凸盘K的样本的i. id个均匀随机点的壳由包含该样本的另一个合适的固定凸盘L的所有平移的交集形成。我们假设K和L都有\(C^2_+\)光滑的边界,并证明了在不同曲率条件下随机L多边形顶点数和缺失面积方差的上界。我们也把我们的一些结果转移到这个模型的一个限定变体上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the variance of generalized random polygons

We consider a probability model in which the hull of a sample of i.i.d. uniform random points from a convex disc K is formed by the intersection of all translates of another suitable fixed convex disc L that contain the sample. Such an object is called a random L-polygon in K. We assume that both K and L have \(C^2_+\) smooth boundaries, and we prove upper bounds on the variance of the number of vertices and missed area of random L-polygons assuming different curvature conditions. We also transfer some of our result to a circumscribed variant of this model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信