用于识别数字约旦曲面的邻接关系

IF 0.7 3区 数学 Q2 MATHEMATICS
Josef Šlapal
{"title":"用于识别数字约旦曲面的邻接关系","authors":"Josef Šlapal","doi":"10.1007/s00010-024-01123-8","DOIUrl":null,"url":null,"abstract":"<div><p>For every positive integer, we introduce an adjacency in the digital space <span>\\({\\mathbb {Z}}^3\\)</span>. Connectedness in the graph obtained is then used to define and study digital Jordan surfaces. The surfaces are acquired as polyhedral surfaces bounding the digital polyhedra that can be face-to-face tiled with digital cubes, triangular prisms, square pyramids, and tetrahedra.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"989 - 1001"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01123-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Adjacencies for recognition of digital Jordan surfaces\",\"authors\":\"Josef Šlapal\",\"doi\":\"10.1007/s00010-024-01123-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For every positive integer, we introduce an adjacency in the digital space <span>\\\\({\\\\mathbb {Z}}^3\\\\)</span>. Connectedness in the graph obtained is then used to define and study digital Jordan surfaces. The surfaces are acquired as polyhedral surfaces bounding the digital polyhedra that can be face-to-face tiled with digital cubes, triangular prisms, square pyramids, and tetrahedra.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"989 - 1001\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01123-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01123-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01123-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个正整数,我们在数字空间\({\mathbb {Z}}^3\)中引入一个邻接关系。然后使用所获得的图中的连通性来定义和研究数字乔丹曲面。这些表面是作为包围数字多面体的多面体表面获得的,这些数字多面体可以与数字立方体、三角棱镜、方形金字塔和四面体面对面平铺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjacencies for recognition of digital Jordan surfaces

For every positive integer, we introduce an adjacency in the digital space \({\mathbb {Z}}^3\). Connectedness in the graph obtained is then used to define and study digital Jordan surfaces. The surfaces are acquired as polyhedral surfaces bounding the digital polyhedra that can be face-to-face tiled with digital cubes, triangular prisms, square pyramids, and tetrahedra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信