用潜在的斐波那契卷积排序1-差排列

IF 0.9 3区 数学 Q2 MATHEMATICS
Hosam Mahmoud
{"title":"用潜在的斐波那契卷积排序1-差排列","authors":"Hosam Mahmoud","doi":"10.1007/s00010-024-01146-1","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss some combinatorics associated with 1-away permutations, where an element can be displaced from its correct position by at most one location. Specifically, we look at a sorting algorithm for such permutations and analyze its number of comparisons, <span>\\(C_n\\)</span>. We find that the mean is a certain combination of two-fold convolutions of Fibonacci numbers and the variance is a certain combination of three-fold convolutions of Fibonacci numbers, with corresponding asymptotics (as <span>\\(n\\rightarrow \\infty \\)</span>): </p><div><div><span>$${\\mathbb {E}}[C_n] \\sim \\frac{5 + \\sqrt{5}}{10}\\, n, \\qquad {\\mathbb {V}\\textrm{ar}}[C_n]\\sim \\frac{\\sqrt{5}}{25} \\, n.$$</span></div></div><p>The proofs contain finer asymptotics down to exponentially small error terms. The relatively small variance admits a weak law and a central limit theorem via a super moment generating function. In view of the special nature of the data, such a specialized algorithm outperforms general comparison-based sorting algorithms.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1209 - 1219"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01146-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Sorting 1-away permutations with underlying Fibonacci convolutions\",\"authors\":\"Hosam Mahmoud\",\"doi\":\"10.1007/s00010-024-01146-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss some combinatorics associated with 1-away permutations, where an element can be displaced from its correct position by at most one location. Specifically, we look at a sorting algorithm for such permutations and analyze its number of comparisons, <span>\\\\(C_n\\\\)</span>. We find that the mean is a certain combination of two-fold convolutions of Fibonacci numbers and the variance is a certain combination of three-fold convolutions of Fibonacci numbers, with corresponding asymptotics (as <span>\\\\(n\\\\rightarrow \\\\infty \\\\)</span>): </p><div><div><span>$${\\\\mathbb {E}}[C_n] \\\\sim \\\\frac{5 + \\\\sqrt{5}}{10}\\\\, n, \\\\qquad {\\\\mathbb {V}\\\\textrm{ar}}[C_n]\\\\sim \\\\frac{\\\\sqrt{5}}{25} \\\\, n.$$</span></div></div><p>The proofs contain finer asymptotics down to exponentially small error terms. The relatively small variance admits a weak law and a central limit theorem via a super moment generating function. In view of the special nature of the data, such a specialized algorithm outperforms general comparison-based sorting algorithms.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"1209 - 1219\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01146-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01146-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01146-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了一些与1-差置换相关的组合问题,其中一个元素最多只能从其正确位置偏移一个位置。具体来说,我们将研究这种排列的排序算法,并分析其比较次数\(C_n\)。我们发现均值是斐波那契数的两重卷积的某种组合,方差是斐波那契数的三重卷积的某种组合,具有相应的渐近性(如\(n\rightarrow \infty \)): $${\mathbb {E}}[C_n] \sim \frac{5 + \sqrt{5}}{10}\, n, \qquad {\mathbb {V}\textrm{ar}}[C_n]\sim \frac{\sqrt{5}}{25} \, n.$$证明包含更精细的渐近性,直至指数小的误差项。相对较小的方差允许一个弱定律和一个中心极限定理通过一个超矩生成函数。鉴于数据的特殊性,这种专门的算法优于一般的基于比较的排序算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sorting 1-away permutations with underlying Fibonacci convolutions

We discuss some combinatorics associated with 1-away permutations, where an element can be displaced from its correct position by at most one location. Specifically, we look at a sorting algorithm for such permutations and analyze its number of comparisons, \(C_n\). We find that the mean is a certain combination of two-fold convolutions of Fibonacci numbers and the variance is a certain combination of three-fold convolutions of Fibonacci numbers, with corresponding asymptotics (as \(n\rightarrow \infty \)):

$${\mathbb {E}}[C_n] \sim \frac{5 + \sqrt{5}}{10}\, n, \qquad {\mathbb {V}\textrm{ar}}[C_n]\sim \frac{\sqrt{5}}{25} \, n.$$

The proofs contain finer asymptotics down to exponentially small error terms. The relatively small variance admits a weak law and a central limit theorem via a super moment generating function. In view of the special nature of the data, such a specialized algorithm outperforms general comparison-based sorting algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信