由经典Sobolev不等式退化的Sobolev不等式

IF 1.4 3区 数学 Q1 MATHEMATICS
David Cruz-Uribe, Feyza Elif Dal, Scott Rodney, Yusuf Zeren
{"title":"由经典Sobolev不等式退化的Sobolev不等式","authors":"David Cruz-Uribe,&nbsp;Feyza Elif Dal,&nbsp;Scott Rodney,&nbsp;Yusuf Zeren","doi":"10.1007/s13324-025-01065-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a degenerate Sobolev inequality of the form </p><div><div><span>$$ \\bigg (\\int _\\Omega |u|^p K\\, dx\\bigg )^{\\frac{1}{p}} \\le C\\Vert K\\Vert _{L^{n}(\\Omega )}\\bigg ( \\int _\\Omega \\big |\\sqrt{Q}\\nabla u \\big |^p\\, dx\\bigg )^{\\frac{1}{p}}, $$</span></div></div><p>where <i>Q</i> is a matrix function whose smallest eigenvalue is bounded below by a constant multiple of <span>\\(K^{-\\frac{2}{p'}}\\)</span>. As an application, we prove the exponential integrability of solutions of the Dirichlet problem for <span>\\(-K^{-1}{{\\,\\textrm{div}\\,}}(Q{{\\,\\mathrm{\\nabla }\\,}}u)=f\\)</span>, <span>\\(f\\in L^\\infty (K,\\Omega )\\)</span>, building upon recent results in Cruz-Uribe, MacDonald, and Rodney (2024).</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate Sobolev inequalities from the classical Sobolev inequality\",\"authors\":\"David Cruz-Uribe,&nbsp;Feyza Elif Dal,&nbsp;Scott Rodney,&nbsp;Yusuf Zeren\",\"doi\":\"10.1007/s13324-025-01065-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a degenerate Sobolev inequality of the form </p><div><div><span>$$ \\\\bigg (\\\\int _\\\\Omega |u|^p K\\\\, dx\\\\bigg )^{\\\\frac{1}{p}} \\\\le C\\\\Vert K\\\\Vert _{L^{n}(\\\\Omega )}\\\\bigg ( \\\\int _\\\\Omega \\\\big |\\\\sqrt{Q}\\\\nabla u \\\\big |^p\\\\, dx\\\\bigg )^{\\\\frac{1}{p}}, $$</span></div></div><p>where <i>Q</i> is a matrix function whose smallest eigenvalue is bounded below by a constant multiple of <span>\\\\(K^{-\\\\frac{2}{p'}}\\\\)</span>. As an application, we prove the exponential integrability of solutions of the Dirichlet problem for <span>\\\\(-K^{-1}{{\\\\,\\\\textrm{div}\\\\,}}(Q{{\\\\,\\\\mathrm{\\\\nabla }\\\\,}}u)=f\\\\)</span>, <span>\\\\(f\\\\in L^\\\\infty (K,\\\\Omega )\\\\)</span>, building upon recent results in Cruz-Uribe, MacDonald, and Rodney (2024).</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01065-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01065-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个退化的Sobolev不等式,其形式为$$ \bigg (\int _\Omega |u|^p K\, dx\bigg )^{\frac{1}{p}} \le C\Vert K\Vert _{L^{n}(\Omega )}\bigg ( \int _\Omega \big |\sqrt{Q}\nabla u \big |^p\, dx\bigg )^{\frac{1}{p}}, $$,其中Q是一个矩阵函数,其最小特征值以\(K^{-\frac{2}{p'}}\)的常数倍为界。作为一个应用,我们在Cruz-Uribe, MacDonald, and Rodney(2024)最近的结果的基础上,证明了\(-K^{-1}{{\,\textrm{div}\,}}(Q{{\,\mathrm{\nabla }\,}}u)=f\), \(f\in L^\infty (K,\Omega )\)的Dirichlet问题解的指数可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerate Sobolev inequalities from the classical Sobolev inequality

We prove a degenerate Sobolev inequality of the form

$$ \bigg (\int _\Omega |u|^p K\, dx\bigg )^{\frac{1}{p}} \le C\Vert K\Vert _{L^{n}(\Omega )}\bigg ( \int _\Omega \big |\sqrt{Q}\nabla u \big |^p\, dx\bigg )^{\frac{1}{p}}, $$

where Q is a matrix function whose smallest eigenvalue is bounded below by a constant multiple of \(K^{-\frac{2}{p'}}\). As an application, we prove the exponential integrability of solutions of the Dirichlet problem for \(-K^{-1}{{\,\textrm{div}\,}}(Q{{\,\mathrm{\nabla }\,}}u)=f\), \(f\in L^\infty (K,\Omega )\), building upon recent results in Cruz-Uribe, MacDonald, and Rodney (2024).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信