Zhanxu Zhang;Linzi Yang;Guanglian Zhang;Jiangwei Deng;Lifeng Bian;Chen Yang
{"title":"CASSNet:用于高光谱图像超分辨率的交叉关注增强光谱-空间交互网络","authors":"Zhanxu Zhang;Linzi Yang;Guanglian Zhang;Jiangwei Deng;Lifeng Bian;Chen Yang","doi":"10.1109/JSTARS.2025.3564379","DOIUrl":null,"url":null,"abstract":"Deep-learning-based super-resolution (SR) methods for a single hyperspectral image have made significant progress in recent years and become an important research direction in remote sensing. Existing methods perform well in extracting spatial features, but challenges remain in integrating spectral and spatial features when modeling global relationships. In order to take full advantage of the higher spectral resolution of hyperspectral images, this article proposes a novel hyperspectral image SR method (CASSNet), which integrates convolutional neural networks and cross-attention mechanisms into a unified framework. This approach achieves comprehensive integration of spectral and spatial information, with extensive exploration at both local and global levels. In the local feature extraction stage, parallel 3-D/2-D convolutions work in tandem to efficiently capture detail information from both spectral and spatial dimensions. In addition, a spectral–spatial dual-branch module employing the cross-attention mechanism is designed to capture the global dependencies within the features, where the reconstructed spectral–spatial module and the spectral–spatial interaction unit can effectively promote the interaction and complementarity of spectral–spatial features. The experiments on three publicly available datasets demonstrated that the proposed method obtained superior SR results, outperforming state-of-the-art SR algorithms.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"11716-11730"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979241","citationCount":"0","resultStr":"{\"title\":\"CASSNet: Cross-Attention Enhanced Spectral–Spatial Interaction Network for Hyperspectral Image Super-Resolution\",\"authors\":\"Zhanxu Zhang;Linzi Yang;Guanglian Zhang;Jiangwei Deng;Lifeng Bian;Chen Yang\",\"doi\":\"10.1109/JSTARS.2025.3564379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep-learning-based super-resolution (SR) methods for a single hyperspectral image have made significant progress in recent years and become an important research direction in remote sensing. Existing methods perform well in extracting spatial features, but challenges remain in integrating spectral and spatial features when modeling global relationships. In order to take full advantage of the higher spectral resolution of hyperspectral images, this article proposes a novel hyperspectral image SR method (CASSNet), which integrates convolutional neural networks and cross-attention mechanisms into a unified framework. This approach achieves comprehensive integration of spectral and spatial information, with extensive exploration at both local and global levels. In the local feature extraction stage, parallel 3-D/2-D convolutions work in tandem to efficiently capture detail information from both spectral and spatial dimensions. In addition, a spectral–spatial dual-branch module employing the cross-attention mechanism is designed to capture the global dependencies within the features, where the reconstructed spectral–spatial module and the spectral–spatial interaction unit can effectively promote the interaction and complementarity of spectral–spatial features. The experiments on three publicly available datasets demonstrated that the proposed method obtained superior SR results, outperforming state-of-the-art SR algorithms.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"11716-11730\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979241\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979241/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979241/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CASSNet: Cross-Attention Enhanced Spectral–Spatial Interaction Network for Hyperspectral Image Super-Resolution
Deep-learning-based super-resolution (SR) methods for a single hyperspectral image have made significant progress in recent years and become an important research direction in remote sensing. Existing methods perform well in extracting spatial features, but challenges remain in integrating spectral and spatial features when modeling global relationships. In order to take full advantage of the higher spectral resolution of hyperspectral images, this article proposes a novel hyperspectral image SR method (CASSNet), which integrates convolutional neural networks and cross-attention mechanisms into a unified framework. This approach achieves comprehensive integration of spectral and spatial information, with extensive exploration at both local and global levels. In the local feature extraction stage, parallel 3-D/2-D convolutions work in tandem to efficiently capture detail information from both spectral and spatial dimensions. In addition, a spectral–spatial dual-branch module employing the cross-attention mechanism is designed to capture the global dependencies within the features, where the reconstructed spectral–spatial module and the spectral–spatial interaction unit can effectively promote the interaction and complementarity of spectral–spatial features. The experiments on three publicly available datasets demonstrated that the proposed method obtained superior SR results, outperforming state-of-the-art SR algorithms.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.