基于几何中值的高度非均匀偏振sar图像协方差矩阵估计

Dehbia Hanis;Luca Pallotta;Karima Hadj-Rabah;Azzedine Bouaraba;Aichouche Belhadj-Aissa
{"title":"基于几何中值的高度非均匀偏振sar图像协方差矩阵估计","authors":"Dehbia Hanis;Luca Pallotta;Karima Hadj-Rabah;Azzedine Bouaraba;Aichouche Belhadj-Aissa","doi":"10.1109/LGRS.2025.3565808","DOIUrl":null,"url":null,"abstract":"The Wishart distribution is a well-established statistical model for characterizing the density of random variables in polarimetric synthetic aperture radar (PolSAR) data, particularly within homogeneous regions where Gaussian assumptions hold. However, as PolSAR applications expand into heterogeneous environments, alternative statistical models have been developed to better capture the complexity of such areas, playing an important role in tasks such as classification. In this study, we examine the effectiveness of covariance matrix estimation using the median matrix, a technique grounded in optimal transport theory and validated in prior research for its effectiveness. Building on this foundation, we propose the application of a statistical model tailored for heterogeneous regions, i.e., following the <inline-formula> <tex-math>$\\mathcal {G}^{0}_{P}$ </tex-math></inline-formula> distribution, addressing the limitations of traditional assumptions. This method is particularly suitable for high-resolution PolSAR datasets, where the homogeneity hypothesis often does not hold. The experimental results obtained using L-band PolSAR images acquired over Foulum in Denmark demonstrate the robustness of our proposed variant.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariance Matrix Estimation via Geometric Median in Highly Heterogeneous PolSAR Images\",\"authors\":\"Dehbia Hanis;Luca Pallotta;Karima Hadj-Rabah;Azzedine Bouaraba;Aichouche Belhadj-Aissa\",\"doi\":\"10.1109/LGRS.2025.3565808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Wishart distribution is a well-established statistical model for characterizing the density of random variables in polarimetric synthetic aperture radar (PolSAR) data, particularly within homogeneous regions where Gaussian assumptions hold. However, as PolSAR applications expand into heterogeneous environments, alternative statistical models have been developed to better capture the complexity of such areas, playing an important role in tasks such as classification. In this study, we examine the effectiveness of covariance matrix estimation using the median matrix, a technique grounded in optimal transport theory and validated in prior research for its effectiveness. Building on this foundation, we propose the application of a statistical model tailored for heterogeneous regions, i.e., following the <inline-formula> <tex-math>$\\\\mathcal {G}^{0}_{P}$ </tex-math></inline-formula> distribution, addressing the limitations of traditional assumptions. This method is particularly suitable for high-resolution PolSAR datasets, where the homogeneity hypothesis often does not hold. The experimental results obtained using L-band PolSAR images acquired over Foulum in Denmark demonstrate the robustness of our proposed variant.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980289/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10980289/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Wishart分布是一个成熟的统计模型,用于表征极化合成孔径雷达(PolSAR)数据中随机变量的密度,特别是在高斯假设成立的均匀区域内。然而,随着PolSAR应用扩展到异构环境,已经开发出替代统计模型来更好地捕获这些区域的复杂性,在分类等任务中发挥重要作用。在本研究中,我们使用中位数矩阵检验协方差矩阵估计的有效性,这是一种基于最优传输理论并在先前研究中验证其有效性的技术。在此基础上,我们提出了针对异质区域的统计模型的应用,即遵循$\mathcal {G}^{0}_{P}$分布,解决了传统假设的局限性。这种方法特别适用于高分辨率PolSAR数据集,因为均匀性假设通常不成立。利用在丹麦Foulum上空获得的l波段PolSAR图像获得的实验结果证明了我们提出的变体的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariance Matrix Estimation via Geometric Median in Highly Heterogeneous PolSAR Images
The Wishart distribution is a well-established statistical model for characterizing the density of random variables in polarimetric synthetic aperture radar (PolSAR) data, particularly within homogeneous regions where Gaussian assumptions hold. However, as PolSAR applications expand into heterogeneous environments, alternative statistical models have been developed to better capture the complexity of such areas, playing an important role in tasks such as classification. In this study, we examine the effectiveness of covariance matrix estimation using the median matrix, a technique grounded in optimal transport theory and validated in prior research for its effectiveness. Building on this foundation, we propose the application of a statistical model tailored for heterogeneous regions, i.e., following the $\mathcal {G}^{0}_{P}$ distribution, addressing the limitations of traditional assumptions. This method is particularly suitable for high-resolution PolSAR datasets, where the homogeneity hypothesis often does not hold. The experimental results obtained using L-band PolSAR images acquired over Foulum in Denmark demonstrate the robustness of our proposed variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信