边界SAM:利用SAM的图像嵌入和细节增强滤波器改进的包裹边界划分

Bahaa Awad;Isin Erer
{"title":"边界SAM:利用SAM的图像嵌入和细节增强滤波器改进的包裹边界划分","authors":"Bahaa Awad;Isin Erer","doi":"10.1109/LGRS.2025.3563023","DOIUrl":null,"url":null,"abstract":"Accurate agricultural parcel boundary delineation is essential in remote sensing applications, yet traditional supervised methods require extensively annotated datasets and often fail to generalize across diverse landscapes. The segment anything model (SAM), a foundational model for zero-shot segmentation, provides scalability but struggles with certain remote sensing challenges, particularly agricultural parcels. In this letter, we propose a novel approach to enhance SAM’s performance by leveraging its embeddings to extract meaningful features. Our method applies principal component analysis (PCA) for dimensionality reduction, high-frequency decomposition, and guided filtering to enhance input images, aligning them better with SAM’s strengths. By refining the input data through these steps, we improve SAM’s ability to delineate parcel boundaries effectively. Experimental results demonstrate consistent improvements across SAM backbone sizes and parameter settings, achieving higher accuracy in segmentation metrics such as under-segmentation (US) rate, over-segmentation (OS) rate, intersection over union (IoU), and false negative (FN) rate.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary SAM: Improved Parcel Boundary Delineation Using SAM’s Image Embeddings and Detail Enhancement Filters\",\"authors\":\"Bahaa Awad;Isin Erer\",\"doi\":\"10.1109/LGRS.2025.3563023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate agricultural parcel boundary delineation is essential in remote sensing applications, yet traditional supervised methods require extensively annotated datasets and often fail to generalize across diverse landscapes. The segment anything model (SAM), a foundational model for zero-shot segmentation, provides scalability but struggles with certain remote sensing challenges, particularly agricultural parcels. In this letter, we propose a novel approach to enhance SAM’s performance by leveraging its embeddings to extract meaningful features. Our method applies principal component analysis (PCA) for dimensionality reduction, high-frequency decomposition, and guided filtering to enhance input images, aligning them better with SAM’s strengths. By refining the input data through these steps, we improve SAM’s ability to delineate parcel boundaries effectively. Experimental results demonstrate consistent improvements across SAM backbone sizes and parameter settings, achieving higher accuracy in segmentation metrics such as under-segmentation (US) rate, over-segmentation (OS) rate, intersection over union (IoU), and false negative (FN) rate.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10972171/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10972171/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的农业地块边界划定在遥感应用中至关重要,但传统的监督方法需要大量注释的数据集,并且往往无法在不同的景观中进行推广。分段任意模型(SAM)是零拍摄分割的基础模型,它提供了可扩展性,但在某些遥感挑战方面存在困难,尤其是农业地块。在这封信中,我们提出了一种新的方法,通过利用其嵌入来提取有意义的特征来提高SAM的性能。我们的方法应用主成分分析(PCA)进行降维、高频分解和引导滤波来增强输入图像,使其更好地与SAM的优势相一致。通过这些步骤对输入数据进行细化,我们提高了SAM有效描绘包裹边界的能力。实验结果表明,在SAM主干大小和参数设置上都有一致的改进,在分割不足(US)率、过度分割(OS)率、交汇(IoU)和假阴性(FN)率等分割指标上实现了更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary SAM: Improved Parcel Boundary Delineation Using SAM’s Image Embeddings and Detail Enhancement Filters
Accurate agricultural parcel boundary delineation is essential in remote sensing applications, yet traditional supervised methods require extensively annotated datasets and often fail to generalize across diverse landscapes. The segment anything model (SAM), a foundational model for zero-shot segmentation, provides scalability but struggles with certain remote sensing challenges, particularly agricultural parcels. In this letter, we propose a novel approach to enhance SAM’s performance by leveraging its embeddings to extract meaningful features. Our method applies principal component analysis (PCA) for dimensionality reduction, high-frequency decomposition, and guided filtering to enhance input images, aligning them better with SAM’s strengths. By refining the input data through these steps, we improve SAM’s ability to delineate parcel boundaries effectively. Experimental results demonstrate consistent improvements across SAM backbone sizes and parameter settings, achieving higher accuracy in segmentation metrics such as under-segmentation (US) rate, over-segmentation (OS) rate, intersection over union (IoU), and false negative (FN) rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信