BTCDNet:用于高光谱图像变化检测的贝叶斯块关注网络

Junshen Luo;Jiahe Li;Xinlin Chu;Sai Yang;Lingjun Tao;Qian Shi
{"title":"BTCDNet:用于高光谱图像变化检测的贝叶斯块关注网络","authors":"Junshen Luo;Jiahe Li;Xinlin Chu;Sai Yang;Lingjun Tao;Qian Shi","doi":"10.1109/LGRS.2025.3563897","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs) provide detailed spectral information, which are effective for change detection (CD). Prior knowledge has been proven to improve the robustness of models in HSI processing. However, current CD methods do not fully use prior knowledge, and research on hyperspectral mangroves’ CD is limited. In this letter, we propose a general hyperspectral CD model with Bayesian prior guided module (BPGM) and tile attention block (TAB) called BTCDNet. BPGM leverages prior information to steer the model training process under limited labeled samples condition, while TAB can reduce complexity and improve performance by tile attention. Moreover, a novel and restricted hyperspectral CD dataset Shenzhen has been annotated for hyperspectral mangroves’ CD reference. Experiments demonstrate that our proposal achieves state-of-the-art (SOTA) performances on this dataset and two other public benchmark datasets. Our code and datasets are available at <uri>https://github.com/JeasunLok/BTCDNet</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BTCDNet: Bayesian Tile Attention Network for Hyperspectral Image Change Detection\",\"authors\":\"Junshen Luo;Jiahe Li;Xinlin Chu;Sai Yang;Lingjun Tao;Qian Shi\",\"doi\":\"10.1109/LGRS.2025.3563897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images (HSIs) provide detailed spectral information, which are effective for change detection (CD). Prior knowledge has been proven to improve the robustness of models in HSI processing. However, current CD methods do not fully use prior knowledge, and research on hyperspectral mangroves’ CD is limited. In this letter, we propose a general hyperspectral CD model with Bayesian prior guided module (BPGM) and tile attention block (TAB) called BTCDNet. BPGM leverages prior information to steer the model training process under limited labeled samples condition, while TAB can reduce complexity and improve performance by tile attention. Moreover, a novel and restricted hyperspectral CD dataset Shenzhen has been annotated for hyperspectral mangroves’ CD reference. Experiments demonstrate that our proposal achieves state-of-the-art (SOTA) performances on this dataset and two other public benchmark datasets. Our code and datasets are available at <uri>https://github.com/JeasunLok/BTCDNet</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10975807/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10975807/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像提供了详细的光谱信息,是变化检测的有效手段。先验知识已被证明可以提高HSI处理中模型的鲁棒性。然而,目前的光谱分析方法没有充分利用先验知识,对高光谱红树林的光谱分析研究有限。在这篇文章中,我们提出了一个通用的高光谱CD模型,该模型具有贝叶斯先验引导模块(BPGM)和块注意力块(TAB),称为BTCDNet。BPGM利用先验信息来指导有限标记样本条件下的模型训练过程,而TAB可以通过分散注意力来降低复杂性并提高性能。此外,本文还对深圳高光谱数据集进行了注释,以供高光谱红树林CD参考。实验表明,我们的建议在该数据集和其他两个公共基准数据集上实现了最先进的(SOTA)性能。我们的代码和数据集可在https://github.com/JeasunLok/BTCDNet上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BTCDNet: Bayesian Tile Attention Network for Hyperspectral Image Change Detection
Hyperspectral images (HSIs) provide detailed spectral information, which are effective for change detection (CD). Prior knowledge has been proven to improve the robustness of models in HSI processing. However, current CD methods do not fully use prior knowledge, and research on hyperspectral mangroves’ CD is limited. In this letter, we propose a general hyperspectral CD model with Bayesian prior guided module (BPGM) and tile attention block (TAB) called BTCDNet. BPGM leverages prior information to steer the model training process under limited labeled samples condition, while TAB can reduce complexity and improve performance by tile attention. Moreover, a novel and restricted hyperspectral CD dataset Shenzhen has been annotated for hyperspectral mangroves’ CD reference. Experiments demonstrate that our proposal achieves state-of-the-art (SOTA) performances on this dataset and two other public benchmark datasets. Our code and datasets are available at https://github.com/JeasunLok/BTCDNet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信