基于组件级语义分割的语义感知ISAR生成

Yuxin Zhao;Huaizhang Liao;Derong Kong;Zhixiong Yang;Jingyuan Xia
{"title":"基于组件级语义分割的语义感知ISAR生成","authors":"Yuxin Zhao;Huaizhang Liao;Derong Kong;Zhixiong Yang;Jingyuan Xia","doi":"10.1109/LGRS.2025.3563712","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of generating high-fidelity inverse synthetic aperture radar (ISAR) images from optical images, particularly for space targets. We propose a framework for the generation of ISAR images incorporating component refinement, which attains high-fidelity ISAR scattering characteristics through the integration of an advanced generation model predicated on semantic segmentation, designated as semantic-aware ISAR generation (SAIG). SAIG renders ISAR images from optical equivalents by learning mutual semantic segmentation maps. Extensive simulations demonstrate its effectiveness and robustness, outperforming state-of-the-art (SOTA) methods by over 8% across key evaluation metrics.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAIG: Semantic-Aware ISAR Generation via Component-Level Semantic Segmentation\",\"authors\":\"Yuxin Zhao;Huaizhang Liao;Derong Kong;Zhixiong Yang;Jingyuan Xia\",\"doi\":\"10.1109/LGRS.2025.3563712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the challenge of generating high-fidelity inverse synthetic aperture radar (ISAR) images from optical images, particularly for space targets. We propose a framework for the generation of ISAR images incorporating component refinement, which attains high-fidelity ISAR scattering characteristics through the integration of an advanced generation model predicated on semantic segmentation, designated as semantic-aware ISAR generation (SAIG). SAIG renders ISAR images from optical equivalents by learning mutual semantic segmentation maps. Extensive simulations demonstrate its effectiveness and robustness, outperforming state-of-the-art (SOTA) methods by over 8% across key evaluation metrics.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10975048/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10975048/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这封信解决了从光学图像生成高保真逆合成孔径雷达(ISAR)图像的挑战,特别是对于空间目标。我们提出了一种包含组件细化的ISAR图像生成框架,该框架通过集成基于语义分割的高级生成模型(称为语义感知ISAR生成(segg))来获得高保真的ISAR散射特征。SAIG通过学习相互语义分割图,从光学等效物中生成ISAR图像。广泛的仿真证明了其有效性和鲁棒性,在关键评估指标上优于最先进的(SOTA)方法超过8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAIG: Semantic-Aware ISAR Generation via Component-Level Semantic Segmentation
This letter addresses the challenge of generating high-fidelity inverse synthetic aperture radar (ISAR) images from optical images, particularly for space targets. We propose a framework for the generation of ISAR images incorporating component refinement, which attains high-fidelity ISAR scattering characteristics through the integration of an advanced generation model predicated on semantic segmentation, designated as semantic-aware ISAR generation (SAIG). SAIG renders ISAR images from optical equivalents by learning mutual semantic segmentation maps. Extensive simulations demonstrate its effectiveness and robustness, outperforming state-of-the-art (SOTA) methods by over 8% across key evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信