{"title":"基于代理和逆代理模型的昂贵多目标优化进化算法","authors":"Qi Deng;Qi Kang;MengChu Zhou;Xiaoling Wang;Shibing Zhao;Siqi Wu;Mohammadhossein Ghahramani","doi":"10.1109/JAS.2025.125111","DOIUrl":null,"url":null,"abstract":"When dealing with expensive multiobjective optimization problems, majority of existing surrogate-assisted evolutionary algorithms (SAEAs) generate solutions in decision space and screen candidate solutions mostly by using designed surrogate models. The generated solutions exhibit excessive randomness, which tends to reduce the likelihood of generating good-quality solutions and cause a long evolution to the optima. To improve SAEAs greatly, this work proposes an evolutionary algorithm based on surrogate and inverse surrogate models by 1) Employing a surrogate model in lieu of expensive (true) function evaluations; and 2) Proposing and using an inverse surrogate model to generate new solutions. By using the same training data but with its inputs and outputs being reversed, the latter is simple to train. It is then used to generate new vectors in objective space, which are mapped into decision space to obtain their corresponding solutions. Using a particular example, this work shows its advantages over existing SAEAs. The results of comparing it with state-of-the-art algorithms on expensive optimization problems show that it is highly competitive in both solution performance and efficiency.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 5","pages":"961-973"},"PeriodicalIF":15.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Algorithm Based on Surrogate and Inverse Surrogate Models for Expensive Multiobjective Optimization\",\"authors\":\"Qi Deng;Qi Kang;MengChu Zhou;Xiaoling Wang;Shibing Zhao;Siqi Wu;Mohammadhossein Ghahramani\",\"doi\":\"10.1109/JAS.2025.125111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When dealing with expensive multiobjective optimization problems, majority of existing surrogate-assisted evolutionary algorithms (SAEAs) generate solutions in decision space and screen candidate solutions mostly by using designed surrogate models. The generated solutions exhibit excessive randomness, which tends to reduce the likelihood of generating good-quality solutions and cause a long evolution to the optima. To improve SAEAs greatly, this work proposes an evolutionary algorithm based on surrogate and inverse surrogate models by 1) Employing a surrogate model in lieu of expensive (true) function evaluations; and 2) Proposing and using an inverse surrogate model to generate new solutions. By using the same training data but with its inputs and outputs being reversed, the latter is simple to train. It is then used to generate new vectors in objective space, which are mapped into decision space to obtain their corresponding solutions. Using a particular example, this work shows its advantages over existing SAEAs. The results of comparing it with state-of-the-art algorithms on expensive optimization problems show that it is highly competitive in both solution performance and efficiency.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 5\",\"pages\":\"961-973\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11005748/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11005748/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Evolutionary Algorithm Based on Surrogate and Inverse Surrogate Models for Expensive Multiobjective Optimization
When dealing with expensive multiobjective optimization problems, majority of existing surrogate-assisted evolutionary algorithms (SAEAs) generate solutions in decision space and screen candidate solutions mostly by using designed surrogate models. The generated solutions exhibit excessive randomness, which tends to reduce the likelihood of generating good-quality solutions and cause a long evolution to the optima. To improve SAEAs greatly, this work proposes an evolutionary algorithm based on surrogate and inverse surrogate models by 1) Employing a surrogate model in lieu of expensive (true) function evaluations; and 2) Proposing and using an inverse surrogate model to generate new solutions. By using the same training data but with its inputs and outputs being reversed, the latter is simple to train. It is then used to generate new vectors in objective space, which are mapped into decision space to obtain their corresponding solutions. Using a particular example, this work shows its advantages over existing SAEAs. The results of comparing it with state-of-the-art algorithms on expensive optimization problems show that it is highly competitive in both solution performance and efficiency.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.